zoukankan      html  css  js  c++  java
  • OpenCV之模板匹配

    原理和c++实现:https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html

    目的是检测、定位一个物体在一副图像中的位置,主要是通过计算两幅图(待检测图像和图像)的相关性来定位的

     

     用于计算相关性的公式如下:

    算法:

    • 在原始图像上移动模板图像
    • 计算每个位置的NCC
    • 当NCC最大时:最佳!

    python实现:

    import numpy as np
    import cv2
    
    def TemplateMatching(src, temp, stepsize): # src: source image, temp: template image, stepsize: the step size for sliding the template
        mean_t = 0;
        var_t = 0;
        location = [0, 0];
        # Calculate the mean and variance of template pixel values
        # ------------------ Put your code below ------------------ 
        mean_t,var_t=cv2.meanStdDev(temp)
    
        max_corr = 0;
        # Slide window in source image and find the maximum correlation
        for i in np.arange(0, src.shape[0] - temp.shape[0], stepsize):
            for j in np.arange(0, src.shape[1] - temp.shape[1], stepsize):
                mean_s = 0;
                var_s = 0;
                corr = 0;
                # Calculate the mean and variance of source image pixel values inside window
                # ------------------ Put your code below ------------------ 
                mean_window=np.mean(src[i:i+temp.shape[0],j:j+temp.shape[1]])
                var_window=np.var(src[i:i+temp.shape[0],j:j+temp.shape[1]])
                
                # Calculate normalized correlation coefficient (NCC) between source and template
                # ------------------ Put your code below ------------------ 
                mul=(src[i:i+temp.shape[0],j:j+temp.shape[1]]-mean_t)*(temp-mean_t)
                sum_val=sum(sum(mul[i])for i in range(len(mul)))
                corr=(1/float((temp.shape[0])*(temp.shape[1])))*sum_val/((var_t)*(var_window))
                if corr > max_corr:
                    max_corr = corr;
                location = [i, j];
        return location
    
    
    # load source and template images
    source_img = cv2.imread('/Users/wangmengxi/Documents/mercy/ec601/openCV/source.jpg',0) # read image in grayscale
    temp = cv2.imread('/Users/wangmengxi/Documents/mercy/ec601/openCV/template.jpg',0) # read image in grayscale
    location = TemplateMatching(source_img, temp, 20);
    print(location)
    match_img = cv2.cvtColor(source_img, cv2.COLOR_GRAY2RGB)
    # Draw a red rectangle on match_img to show the template matching result
    # ------------------ Put your code below ------------------ 
    cv2.rectangle(match_img,(location[1]-temp.shape[1]/2,location[0]-temp.shape[0]/2),(location[1]+temp.shape[1]/2,location[0]+temp.shape[0]/2),(0,0,255),3)
    
    # Save the template matching result image (match_img)
    # ------------------ Put your code below ------------------ 
    cv2.imwrite("/Users/wangmengxi/Documents/mercy/ec601/openCV/match_img.jpg",match_img)
    
    # Display the template image and the matching result
    #cv2.namedWindow('TemplateImage', cv2.WINDOW_NORMAL)
    #cv2.namedWindow('MyTemplateMatching', cv2.WINDOW_NORMAL)
    #cv2.imshow('TemplateImage', temp)
    #cv2.imshow('MyTemplateMatching', match_img)
    #cv2.waitKey(0)
    #cv2.destroyAllWindows()

    结果:

    source img:

    template:

    match:

  • 相关阅读:
    ASP.NET伪静态配置
    拖动条控件 (UISlider)
    进度环控件 (UIActivityIndicatorView)
    进度条控件 (UIProgressView)
    图像控件 (UIImageView)
    分段控件 (UISegmentedControl)
    CocoaPods安装和使用教程
    iOS 在UILabel显示不同的字体和颜色
    iOS开源项目(新)
    iOS开源项目(旧)
  • 原文地址:https://www.cnblogs.com/x1mercy/p/7865336.html
Copyright © 2011-2022 走看看