zoukankan      html  css  js  c++  java
  • poj_1458 LCS problem F.最长上升公共子序列

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
     分析:
    d[i][j]表示a[1],a[2]……a[i] 和b[1],b[2]……b[i]的最长上升子序列长度.while(a[i]==a[j])  d[i][j]=d[i-1][j-1]+1;   else  d[i][j]=max{d[i-1][j],d[i][j-1]};     时间复杂度为o(n*m).
     
    代码及简要分析:
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<string>   //使用cin>>输入需要加上此头文件
     5 using namespace std;
     6 string a,b;
     7 int dp[1000][1000];
     8 int max(int x,int y)
     9 {
    10     if(x>=y)
    11         return x;
    12     else
    13         return y;
    14 }
    15 
    16 int main()
    17 {
    18     int i,j;
    19     while(cin>>a)
    20     {
    21         cin>>b;
    22         memset(dp,0,sizeof(dp));//ddp[i][j]为a[0]...a[i]和b[0]...b[j]的最长公共子序列的长度。
    23         for(i=0;i<a.size();i++)
    24         {
    25             for(j=0;j<b.size();j++)
    26             {
    27                 if(a[i]==b[j])
    28                     dp[i+1][j+1]=dp[i][j]+1;  //注意此从 dp[1][1]开始
    29                 else
    30                     dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
    31 
    32             }
    33         }
    34         printf("%d
    ",dp[i][j]);
    35     }
    36    return 0;
    37 }
    View Code
     
  • 相关阅读:
    Flex 布局教程:语法篇
    ajax总结
    响应式技能储备
    响应式选项卡
    搜索框代码
    如何区分内存类型及查看内存的兼容性
    动手动脑4(03继承与多态)
    Log Explorer恢复sql误删数据
    判断YYYYMMDD这种格式的AJAX,基本上把闰年和2月等的情况都考虑进去了
    关于(object sender, System.EventArgs e)中参数sender和e的问题。
  • 原文地址:https://www.cnblogs.com/x512149882/p/4738706.html
Copyright © 2011-2022 走看看