zoukankan      html  css  js  c++  java
  • poj_1458 LCS problem F.最长上升公共子序列

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
     分析:
    d[i][j]表示a[1],a[2]……a[i] 和b[1],b[2]……b[i]的最长上升子序列长度.while(a[i]==a[j])  d[i][j]=d[i-1][j-1]+1;   else  d[i][j]=max{d[i-1][j],d[i][j-1]};     时间复杂度为o(n*m).
     
    代码及简要分析:
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<string>   //使用cin>>输入需要加上此头文件
     5 using namespace std;
     6 string a,b;
     7 int dp[1000][1000];
     8 int max(int x,int y)
     9 {
    10     if(x>=y)
    11         return x;
    12     else
    13         return y;
    14 }
    15 
    16 int main()
    17 {
    18     int i,j;
    19     while(cin>>a)
    20     {
    21         cin>>b;
    22         memset(dp,0,sizeof(dp));//ddp[i][j]为a[0]...a[i]和b[0]...b[j]的最长公共子序列的长度。
    23         for(i=0;i<a.size();i++)
    24         {
    25             for(j=0;j<b.size();j++)
    26             {
    27                 if(a[i]==b[j])
    28                     dp[i+1][j+1]=dp[i][j]+1;  //注意此从 dp[1][1]开始
    29                 else
    30                     dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
    31 
    32             }
    33         }
    34         printf("%d
    ",dp[i][j]);
    35     }
    36    return 0;
    37 }
    View Code
     
  • 相关阅读:
    vim中ctags应用
    LCD屏参数及应用举例
    modbus概述
    Modbus常用
    git常用操作
    linux内核学习
    截图工具gsnap
    信号signal编号及意义及一般处理
    oracle 表空间 数据文件 表的关系
    IBM MQ 2035 或 2013认证错误的解决方法
  • 原文地址:https://www.cnblogs.com/x512149882/p/4738706.html
Copyright © 2011-2022 走看看