zoukankan      html  css  js  c++  java
  • Codefores 1025D Recovering BST

    给定一个序列,问这个序列是否能够构成一个二叉搜索树,使得任一边连接的点的gcd大于1

    区间dp

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    typedef long long LL;
    
    const int maxn = 710;
    
    int A[maxn];
    bool G[maxn][maxn];
    bool dp[maxn][maxn][2];
    
    int gcd(int x, int y) {
    	return y == 0 ? x : gcd(y, x % y);
    }
    
    int main() {
    	int n; scanf("%d", &n);
    	for (int i = 1; i <= n; i++) scanf("%d", &A[i]);
    	for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) {
    		G[i][j] = (gcd(A[i], A[j]) > 1);
    	}
    	for (int len = 1; len <= n; len++) {
    		for (int l = 1, r = l + len - 1; l + len - 1 <= n; l++, r++) {
    			for (int m = l; m <= r; m++) {
    				bool flag = true;
    				if (l == m) {
    					flag &= true;
    				} else {
    					flag &= dp[l][m - 1][0];
    				}
    				if (m == r) {
    					flag &= true;
    				} else {
    					flag &= dp[m + 1][r][1];
    				}
    				if (flag) {
    					dp[l][r][1] |= G[m][l - 1];
    					dp[l][r][0] |= G[m][r + 1];
    				}
    			}
    		}
    	}
    
    	for (int i = 1; i <= n; i++) {
    		bool tag = true;
    		if (i == 1) {
    			tag &= true;
    		} else {
    			tag &= dp[1][i - 1][0];
    		}
    		if (i == n) {
    			tag &= true;
    		} else {
    			tag &= dp[i + 1][n][1];
    		}
    		if (tag) {
    			puts("Yes"); return 0;
    		}
    	}
    	puts("No");
    	return 0;
    }
    
  • 相关阅读:
    《Java程序设计》第五周学习总结
    团队建设任务
    《Java程序设计》第四周学习总结
    ML_Review_GMM(Ch10)
    ML_Review_SVM(Ch9)
    ML_Review_LDA(Ch5)
    ML_Review_PCA(Ch4)
    关于Kernel的思考
    ML_Homework_Porject_2_LDA_KNN
    CV_Learn
  • 原文地址:https://www.cnblogs.com/xFANx/p/9513580.html
Copyright © 2011-2022 走看看