zoukankan      html  css  js  c++  java
  • 《Linux内核设计与实现》读书笔记(十二)- 内存管理

    转自:http://www.cnblogs.com/wang_yb/archive/2013/05/23/3095907.html

    内核的内存使用不像用户空间那样随意,内核的内存出现错误时也只有靠自己来解决(用户空间的内存错误可以抛给内核来解决)。

    所有内核的内存管理必须要简洁而且高效。

    主要内容:

    • 内存的管理单元
    • 获取内存的方法
    • 获取高端内存
    • 内核内存的分配方式
    • 总结

    1. 内存的管理单元

    内存最基本的管理单元是页,同时按照内存地址的大小,大致分为3个区。

    1.1 页

    页的大小与体系结构有关,在 x86 结构中一般是 4KB或者8KB。

    可以通过 getconf 命令来查看系统的page的大小:

    [wangyubin@localhost ]$ getconf -a | grep -i 'page'
    
    PAGESIZE                           4096
    PAGE_SIZE                          4096
    _AVPHYS_PAGES                      637406
    _PHYS_PAGES                        2012863

    以上的 PAGESIZE 就是当前机器页大小,即 4KB

    页的结构体头文件是: <linux/mm_types.h> 位置:include/linux/mm_types.h

    /*
     * 页中包含的成员非常多,还包含了一些联合体
     * 其中有些字段我暂时还不清楚含义,以后再补上。。。
     */
    struct page {
        unsigned long flags;    /* 存放页的状态,各种状态参见<linux/page-flags.h> */
        atomic_t _count;        /* 页的引用计数 */
        union {
            atomic_t _mapcount;    /* 已经映射到mms的pte的个数 */
            struct {        /* 用于slab层 */
                u16 inuse;
                u16 objects;
            };
        };
        union {
            struct {
            unsigned long private;        /* 此page作为私有数据时,指向私有数据 */
            struct address_space *mapping;    /* 此page作为页缓存时,指向关联的address_space */
            };
    #if USE_SPLIT_PTLOCKS
            spinlock_t ptl;
    #endif
            struct kmem_cache *slab;    /* 指向slab层 */
            struct page *first_page;    /* 尾部复合页中的第一个页 */
        };
        union {
            pgoff_t index;        /* Our offset within mapping. */
            void *freelist;        /* SLUB: freelist req. slab lock */
        };
        struct list_head lru;    /* 将页关联起来的链表项 */
    #if defined(WANT_PAGE_VIRTUAL)
        void *virtual;            /* 页的虚拟地址 */
    #endif /* WANT_PAGE_VIRTUAL */
    #ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
        unsigned long debug_flags;    /* Use atomic bitops on this */
    #endif
    
    #ifdef CONFIG_KMEMCHECK
        /*
         * kmemcheck wants to track the status of each byte in a page; this
         * is a pointer to such a status block. NULL if not tracked.
         */
        void *shadow;
    #endif
    };

    物理内存的每个页都有一个对应的 page 结构,看似会在管理上浪费很多内存,其实细细算来并没有多少。

    比如上面的page结构体,每个字段都算4个字节的话,总共40多个字节。(union结构只算一个字段)

    那么对于一个页大小 4KB 的 4G内存来说,一个有 4*1024*1024 / 4 = 1048576 个page,

    一个page 算40个字节,在管理内存上共消耗内存 40MB左右。

    如果页的大小是 8KB 的话,消耗的内存只有 20MB 左右。相对于 4GB 来说并不算很多。

    1.2 区

    页是内存管理的最小单元,但是并不是所有的页对于内核都一样。

    内核将内存按地址的顺序分成了不同的区,有的硬件只能访问有专门的区。

    内核中分的区定义在头文件 <linux/mmzone.h> 位置:include/linux/mmzone.h

    内存区的种类参见 enum zone_type 中的定义。

    内存区的结构体定义也在 <linux/mmzone.h> 中。

    具体参考其中 struct zone 的定义。

    其实一般主要关注的区只有3个:

    描述

    物理内存

    ZONE_DMA DMA使用的页 <16MB
    ZONE_NORMAL 正常可寻址的页 16~896MB
    ZONE_HIGHMEM 动态映射的页 >896MB

    某些硬件只能直接访问内存地址,不支持内存映射,对于这些硬件内核会分配 ZONE_DMA 区的内存。

    某些硬件的内存寻址范围很广,比虚拟寻址范围还要大的多,那么就会用到 ZONE_HIGHMEM 区的内存,

    对于 ZONE_HIGHMEM 区的内存,后面还会讨论。

    对于大部分的内存申请,只要用 ZONE_NORMAL 区的内存即可。

    2. 获取内存的方法

    内核中提供了多种获取内存的方法,了解各种方法的特点,可以恰当的将其用于合适的场景。

    2.1 按页获取 - 最原始的方法,用于底层获取内存的方式

    以下分配内存的方法参见:<linux/gfp.h>

    方法

    描述

    alloc_page(gfp_mask) 只分配一页,返回指向页结构的指针
    alloc_pages(gfp_mask, order) 分配 2^order 个页,返回指向第一页页结构的指针
    __get_free_page(gfp_mask) 只分配一页,返回指向其逻辑地址的指针
    __get_free_pages(gfp_mask, order) 分配 2^order 个页,返回指向第一页逻辑地址的指针
    get_zeroed_page(gfp_mask) 只分配一页,让其内容填充为0,返回指向其逻辑地址的指针

    alloc** 方法和 get** 方法的区别在于,一个返回的是内存的物理地址,一个返回内存物理地址映射后的逻辑地址。

    如果无须直接操作物理页结构体的话,一般使用 get** 方法。

    相应的释放内存的函数如下:也是在 <linux/gfp.h> 中定义的

    extern void __free_pages(struct page *page, unsigned int order);
    extern void free_pages(unsigned long addr, unsigned int order);
    extern void free_hot_page(struct page *page);

    在请求内存时,参数中有个 gfp_mask 标志,这个标志是控制分配内存时必须遵守的一些规则。

    gfp_mask 标志有3类:(所有的 GFP 标志都在 <linux/gfp.h> 中定义)

    1. 行为标志 :控制分配内存时,分配器的一些行为
    2. 区标志   :控制内存分配在那个区(ZONE_DMA, ZONE_NORMAL, ZONE_HIGHMEM 之类)
    3. 类型标志 :由上面2种标志组合而成的一些常用的场景

    行为标志主要有以下几种:

    行为标志

    描述

    __GFP_WAIT 分配器可以睡眠
    __GFP_HIGH 分配器可以访问紧急事件缓冲池
    __GFP_IO 分配器可以启动磁盘I/O
    __GFP_FS 分配器可以启动文件系统I/O
    __GFP_COLD 分配器应该使用高速缓存中快要淘汰出去的页
    __GFP_NOWARN 分配器将不打印失败警告
    __GFP_REPEAT 分配器在分配失败时重复进行分配,但是这次分配还存在失败的可能
    __GFP_NOFALL 分配器将无限的重复进行分配。分配不能失败
    __GFP_NORETRY 分配器在分配失败时不会重新分配
    __GFP_NO_GROW 由slab层内部使用
    __GFP_COMP 添加混合页元数据,在 hugetlb 的代码内部使用

    区标志主要以下3种:

    区标志

    描述

    __GFP_DMA 从 ZONE_DMA 分配
    __GFP_DMA32 只在 ZONE_DMA32 分配 (注1)
    __GFP_HIGHMEM 从 ZONE_HIGHMEM 或者 ZONE_NORMAL 分配 (注2)

    注1:ZONE_DMA32 和 ZONE_DMA 类似,该区包含的页也可以进行DMA操作。 
             唯一不同的地方在于,ZONE_DMA32 区的页只能被32位设备访问。 
    注2:优先从 ZONE_HIGHMEM 分配,如果 ZONE_HIGHMEM 没有多余的页则从 ZONE_NORMAL 分配。

    类型标志是编程中最常用的,在使用标志时,应首先看看类型标志中是否有合适的,如果没有,再去自己组合 行为标志和区标志。

    类型标志

    实际标志

    描述

    GFP_ATOMIC __GFP_HIGH 这个标志用在中断处理程序,下半部,持有自旋锁以及其他不能睡眠的地方
    GFP_NOWAIT 0 与 GFP_ATOMIC 类似,不同之处在于,调用不会退给紧急内存池。 
    这就增加了内存分配失败的可能性
    GFP_NOIO __GFP_WAIT 这种分配可以阻塞,但不会启动磁盘I/O。 
    这个标志在不能引发更多磁盘I/O时能阻塞I/O代码,可能会导致递归
    GFP_NOFS (__GFP_WAIT | __GFP_IO) 这种分配在必要时可能阻塞,也可能启动磁盘I/O,但不会启动文件系统操作。 
    这个标志在你不能再启动另一个文件系统的操作时,用在文件系统部分的代码中
    GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS ) 这是常规的分配方式,可能会阻塞。这个标志在睡眠安全时用在进程上下文代码中。 
    为了获得调用者所需的内存,内核会尽力而为。这个标志应当为首选标志
    GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS ) 这是常规的分配方式,可能会阻塞。用于为用户空间进程分配内存时
    GFP_HIGHUSER (__GFP_WAIT | __GFP_IO | __GFP_FS )|__GFP_HIGHMEM) 从 ZONE_HIGHMEM 进行分配,可能会阻塞。用于为用户空间进程分配内存
    GFP_DMA __GFP_DMA 从 ZONE_DMA 进行分配。需要获取能供DMA使用的内存的设备驱动程序使用这个标志 
    通常与以上的某个标志组合在一起使用。

    以上各种类型标志的使用场景总结:

    场景

    相应标志

    进程上下文,可以睡眠 使用 GFP_KERNEL
    进程上下文,不可以睡眠 使用 GFP_ATOMIC,在睡眠之前或之后以 GFP_KERNEL 执行内存分配
    中断处理程序 使用 GFP_ATOMIC
    软中断 使用 GFP_ATOMIC
    tasklet 使用 GFP_ATOMIC
    需要用于DMA的内存,可以睡眠 使用 (GFP_DMA|GFP_KERNEL)
    需要用于DMA的内存,不可以睡眠 使用 (GFP_DMA|GFP_ATOMIC),或者在睡眠之前执行内存分配

    2.2 按字节获取 - 用的最多的获取方法

    这种内存分配方法是平时使用比较多的,主要有2种分配方法:kmalloc()和vmalloc()

    kmalloc的定义在 <linux/slab_def.h> 中

    /**
     * @size  - 申请分配的字节数
     * @flags - 上面讨论的各种 gfp_mask
     */
    static __always_inline void *kmalloc(size_t size, gfp_t flags)
    #+end_src
    
    vmalloc的定义在 mm/vmalloc.c 中
    #+begin_src C
    /**
     * @size - 申请分配的字节数
     */
    void *vmalloc(unsigned long size)

    kmalloc 和 vmalloc 区别在于:

    • kmalloc 分配的内存物理地址是连续的,虚拟地址也是连续的
    • vmalloc 分配的内存物理地址是不连续的,虚拟地址是连续的

    因此在使用中,用的较多的还是 kmalloc,因为kmalloc 的性能较好。

    因为kmalloc的物理地址和虚拟地址之间的映射比较简单,只需要将物理地址的第一页和虚拟地址的第一页关联起来即可。

    而vmalloc由于物理地址是不连续的,所以要将物理地址的每一页都和虚拟地址关联起来才行。

    kmalloc 和 vmalloc 所对应的释放内存的方法分别为:

    void kfree(const void *)
    void vfree(const void *)

    2.3 slab层获取 - 效率最高的获取方法

    频繁的分配/释放内存必然导致系统性能的下降,所以有必要为频繁分配/释放的对象内心建立缓存。

    而且,如果能为每个处理器建立专用的高速缓存,还可以避免 SMP锁带来的性能损耗。

    2.3.1 slab层实现原理

    linux中的高速缓存是用所谓 slab 层来实现的,slab层即内核中管理高速缓存的机制。

    整个slab层的原理如下:

    1. 可以在内存中建立各种对象的高速缓存(比如进程描述相关的结构 task_struct 的高速缓存)
    2. 除了针对特定对象的高速缓存以外,也有通用对象的高速缓存
    3. 每个高速缓存中包含多个 slab,slab用于管理缓存的对象
    4. slab中包含多个缓存的对象,物理上由一页或多个连续的页组成

    高速缓存->slab->缓存对象之间的关系如下图:

    mem_cache

    2.3.2 slab层的应用

    slab结构体的定义参见:mm/slab.c

    struct slab {
        struct list_head list;   /* 存放缓存对象,这个链表有 满,部分满,空 3种状态  */
        unsigned long colouroff; /* slab 着色的偏移量 */
        void *s_mem;             /* 在 slab 中的第一个对象 */
        unsigned int inuse;         /* slab 中已分配的对象数 */
        kmem_bufctl_t free;      /* 第一个空闲对象(如果有的话) */
        unsigned short nodeid;   /* 应该是在 NUMA 环境下使用 */
    };

    slab层的应用主要有四个方法:

    • 高速缓存的创建
    • 从高速缓存中分配对象
    • 向高速缓存释放对象
    • 高速缓存的销毁
    /**
     * 创建高速缓存
     * 参见文件: mm/slab.c
     * 这个函数的注释很详细,这里就不多说了。
     */
    struct kmem_cache *
    kmem_cache_create (const char *name, size_t size, size_t align,
        unsigned long flags, void (*ctor)(void *))
    
    /**
     * 从高速缓存中分配对象也很简单
     * 函数参见文件:mm/slab.c
     * @cachep - 指向高速缓存指针
     * @flags  - 之前讨论的 gfp_mask 标志,只有在高速缓存中所有slab都没有空闲对象时,
     *           需要申请新的空间时,这个标志才会起作用。
     *
     * 分配成功时,返回指向对象的指针
     */
    void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
    
    /**
     * 向高速缓存释放对象
     * @cachep - 指向高速缓存指针
     * @objp   - 要释放的对象的指针
     */
    void kmem_cache_free(struct kmem_cache *cachep, void *objp)
    
    /**
     * 销毁高速缓存
     * @cachep - 指向高速缓存指针 
     */
    void kmem_cache_destroy(struct kmem_cache *cachep)

    我做了创建高速缓存的例子,来尝试使用上面的几个函数。

    测试代码如下:(其中用到的 kn_common.h 和 kn_common.c 参见之前的博客《Linux内核设计与实现》读书笔记(六)- 内核数据结构)

    #include <linux/slab.h>
    #include <linux/slab_def.h>
    #include "kn_common.h"
    
    MODULE_LICENSE("Dual BSD/GPL");
    
    #define MYSLAB "testslab"
    
    static struct kmem_cache *myslab;
    
    /* 申请内存时调用的构造函数 */
    static void ctor(void* obj)
    {
        printk(KERN_ALERT "constructor is running....
    ");
    }
    
    struct student
    {
        int id;
        char* name;
    };
    
    static void print_student(struct student *);
    
    
    static int testslab_init(void)
    {
        struct student *stu1, *stu2;
        
        /* 建立slab高速缓存,名称就是宏 MYSLAB */
        myslab = kmem_cache_create(MYSLAB,
                                   sizeof(struct student),
                                   0,
                                   0,
                                   ctor);
    
        /* 高速缓存中分配2个对象 */
        printk(KERN_ALERT "alloc one student....
    ");
        stu1 = (struct student*)kmem_cache_alloc(myslab, GFP_KERNEL);
        stu1->id = 1;
        stu1->name = "wyb1";
        print_student(stu1);
        
        printk(KERN_ALERT "alloc one student....
    ");
        stu2 = (struct student*)kmem_cache_alloc(myslab, GFP_KERNEL);
        stu2->id = 2;
        stu2->name = "wyb2";
        print_student(stu2);
        
        /* 释放高速缓存中的对象 */
        printk(KERN_ALERT "free one student....
    ");
        kmem_cache_free(myslab, stu1);
    
        printk(KERN_ALERT "free one student....
    ");
        kmem_cache_free(myslab, stu2);
    
        /* 执行完后查看 /proc/slabinfo 文件中是否有名称为 “testslab”的缓存 */
        return 0;
    }
    
    static void testslab_exit(void)
    {
        /* 删除建立的高速缓存 */
        printk(KERN_ALERT "*************************
    ");
        print_current_time(0);
        kmem_cache_destroy(myslab);
        printk(KERN_ALERT "testslab is exited!
    ");
        printk(KERN_ALERT "*************************
    ");
    
        /* 执行完后查看 /proc/slabinfo 文件中是否有名称为 “testslab”的缓存 */
    }
    
    static void print_student(struct student *stu)
    {
        if (stu != NULL)
        {
            printk(KERN_ALERT "**********student info***********
    ");
            printk(KERN_ALERT "student id   is: %d
    ", stu->id);
            printk(KERN_ALERT "student name is: %s
    ", stu->name);
            printk(KERN_ALERT "*********************************
    ");
        }
        else
            printk(KERN_ALERT "the student info is null!!
    ");    
    }
    
    module_init(testslab_init);
    module_exit(testslab_exit);

    Makefile文件如下:

    # must complile on customize kernel
    obj-m += myslab.o
    myslab-objs := testslab.o kn_common.o
    
    #generate the path
    CURRENT_PATH:=$(shell pwd)
    #the current kernel version number
    LINUX_KERNEL:=$(shell uname -r)
    #the absolute path
    LINUX_KERNEL_PATH:=/usr/src/kernels/$(LINUX_KERNEL)
    #complie object
    all:
        make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules
        rm -rf modules.order Module.symvers .*.cmd *.o *.mod.c .tmp_versions *.unsigned
    #clean
    clean:
        rm -rf modules.order Module.symvers .*.cmd *.o *.mod.c *.ko .tmp_versions *.unsigned

    执行测试代码:(我是在 centos6.3 x64 上实验的)

    [root@vbox chap12]# make
    [root@vbox chap12]# insmod myslab.ko 
    [root@vbox chap12]# dmesg | tail -220 
    # 可以看到第一次申请内存时,系统一次分配很多内存用于缓存(构造函数执行了多次)
    [root@vbox chap12]# cat /proc/slabinfo | grep test #查看我们建立的缓存名在不在系统中
    testslab               0      0     16  202    1 : tunables  120   60    0 : slabdata      0      0      0
    [root@vbox chap12]# rmmod myslab.ko #卸载内核模块
    [root@vbox chap12]# cat /proc/slabinfo | grep test #我们的缓存名已经不在系统中了

    3. 获取高端内存

    高端内存就是之前提到的 ZONE_HIGHMEM 区的内存。

    在x86体系结构中,这个区的内存不能映射到内核地址空间上,也就是没有逻辑地址,

    为了使用 ZONE_HIGHMEM 区的内存,内核提供了永久映射和临时映射2种手段:

     

    3.1 永久映射

    永久映射的函数是可以睡眠的,所以只能用在进程上下文中。

    /* 将 ZONE_HIGHMEM 区的一个page永久的映射到内核地址空间
     * 返回值即为这个page对应的逻辑地址
     */
    static inline void *kmap(struct page *page)
    
    /* 允许永久映射的数量是有限的,所以不需要高端内存时,应该及时的解除映射 */
    static inline void kunmap(struct page *page)

    3.2 临时映射

    临时映射不会阻塞,也禁止了内核抢占,所以可以用在中断上下文和其他不能重新调度的地方。

    /**
     * 将 ZONE_HIGHMEM 区的一个page临时映射到内核地址空间
     * 其中的 km_type 表示映射的目的,
     * enum kn_type 的定义参见:<asm/kmap_types.h>
     */
    static inline void *kmap_atomic(struct page *page, enum km_type idx)
    
    /* 相应的解除映射是个宏 */
    #define kunmap_atomic(addr, idx)    do { pagefault_enable(); } while (0)

    以上的函数都在 <linux/highmem.h> 中定义的。

    4. 内核内存的分配方式

    内核的内存分配和用户空间的内存分配相比有着更多的限制条件,同时也有着更高的性能要求。

    下面讨论2个和用户空间不同的内存分配方式。

    4.1 内核栈上的静态分配

    用户空间中一般不用担心栈上的内存不足,也不用担心内存的管理问题(比如内存越界之类的),

    即使出了异常也有内核来保证系统的正常运行。

    而在内核空间则完全不一样,不仅栈空间有限,而且为了管理的效率和尽量减少问题的发生,

    内核栈一般都是小而且固定的。

    在x86体系结构中,内核栈的大小一般就是1页或2页,即 4KB ~ 8KB

    内核栈可以在编译内核时通过配置选项将内核栈配置为1页,

    配置为1页的好处是分配时比较简单,只有一页,不存在内存碎片的情况,因为一页是本就是分配的最小单位。

    当有中断发生时,如果共享内核栈,中断程序和被中断程序共享一个内核栈会可能导致空间不足,

    于是,每个进程除了有个内核栈之外,还有一个中断栈,中断栈一般也就1页大小。

    查看当前系统内核栈大小的方法:

    [xxxxx@localhost ~]$ ulimit -a | grep 'stack'
    stack size              (kbytes, -s) 8192

    4.2 按CPU分配

    与单CPU环境不同,SMP环境下的并行是真正的并行。单CPU环境是宏观并行,微观串行。

    真正并行时,会有更多的并发问题。

    假定有如下场景:

    void* p;
    
    if (p == NULL)
    {
    /* 对 P 进行相应的操作,最终 P 不是NULL了 */
    }
    else
    {
    /* P 不是NULL,继续对 P 进行相应的操作 */
    }

    在上述场景下,可能会有以下的执行流程:

    1. 刚开始 p == NULL
    2. 线程A 执行到 [if (p == NULL)] ,刚进入 if 内的代码时被线程B 抢占 
        由于线程A 还没有执行 if 内的代码,所以 p 仍然是 NULL
    3. 线程B 抢占到CPU后开始执行,执行到 [if (p == NULL)]时, 发现 p 是 NULL,执行 if 内的代码
    4. 线程B 执行完后,线程A 重新被调度,继续执行 if 的代码 
        其实此时由于线程B 已经执行完,p 已经不是 NULL了,线程A 可能会破坏线程B 已经完成的处理,导致数据不一致

    在单CPU环境下,上述情况无需加锁,只需在 if 处理之前禁止内核抢占,在 else 处理之后恢复内核抢占即可。

    而在SMP环境下,上述情况必须加锁,因为禁止内核抢占只能禁止当前CPU的抢占,其他的CPU仍然调度线程B 来抢占线程A 的执行

    SMP环境下加锁过多的话,会严重影响并行的效率,如果是自旋锁的话,还会浪费其他CPU的执行时间。

    所以内核中才有了按CPU分配数据的接口。

    按CPU分配数据之后,每个CPU自己的数据不会被其他CPU访问,虽然浪费了一点内存,但是会使系统更加的简洁高效。

    4.2.1 按CPU分配的优势

    按CPU来分配数据主要有2个优点:

    1. 最直接的效果就是减少了对数据的锁,提高了系统的性能
    2. 由于每个CPU有自己的数据,所以处理器切换时可以大大减少缓存失效的几率 (*注1)

    注1:如果一个处理器操作某个数据,而这个数据在另一个处理器的缓存中时,那么存放这个数据的那个

    处理器必须清理或刷新自己的缓存。持续的缓存失效成为缓存抖动,对系统性能影响很大。

    4.2.2 编译时分配

    可以在编译时就定义分配给每个CPU的变量,其分配的接口参见:<linux/percpu-defs.h>

    /* 给每个CPU声明一个类型为 type,名称为 name 的变量 */
    DECLARE_PER_CPU(type, name)
    /* 给每个CPU定义一个类型为 type,名称为 name 的变量 */
    DEFINE_PER_CPU(type, name)

    注意上面两个宏,一个是声明,一个是定义。

    其实也就是 DECLARE_PER_CPU 中多了个 extern 的关键字

    分配好变量后,就可以在代码中使用这个变量 name 了。

    DEFINE_PER_CPU(int, name);      /* 为每个CPU定义一个 int 类型的name变量 */
    
    get_cpu_var(name)++;            /* 当前处理器上的name变量 +1 */
    put_cpu_var(name);              /* 完成对name的操作后,激活当前处理器的内核抢占 */

    通过 get_cpu_var 和 put_cpu_var 的代码,我们可以发现其中有禁止和激活内核抢占的函数。

    相关代码在 <linux/percpu.h> 中

    #define get_cpu_var(var) (*({                
        extern int simple_identifier_##var(void);    
        preempt_disable();/* 这句就是禁止当前处理器上的内核抢占 */    
        &__get_cpu_var(var); }))
    #define put_cpu_var(var) preempt_enable()  /* 这句就是激活当前处理器上的内核抢占 */
    4.2.3 运行时分配

    除了像上面那样静态的给每个CPU分配数据,还可以以指针的方式在运行时给每个CPU分配数据。

    动态分配参见:<linux/percpu.h>

    /* 给每个处理器分配一个 size 字节大小的对象,对象的偏移量是 align */
    extern void *__alloc_percpu(size_t size, size_t align);
    /* 释放所有处理器上已分配的变量 __pdata */
    extern void free_percpu(void *__pdata);
    
    /* 还有一个宏,是按对象类型 type 来给每个CPU分配数据的,
     * 其实本质上还是调用了 __alloc_percpu 函数 */
    #define alloc_percpu(type)    (type *)__alloc_percpu(sizeof(type), 
                                   __alignof__(type))

    动态分配的一个使用例子如下:

    void *percpu_ptr;
    unsigned long *foo;
    
    percpu_ptr = alloc_percpu(unsigned long);
    if (!percpu_ptr)
        /* 内存分配错误 */
    
    foo = get_cpu_var(percpu_ptr);
    /* 操作foo ... */
    put_cpu_var(percpu_ptr);

    5. 总结

    在众多的内存分配函数中,如何选择合适的内存分配函数很重要,下面总结了一些选择的原则:

    应用场景

    分配函数选择

    如果需要物理上连续的页 选择低级页分配器或者 kmalloc 函数
    如果kmalloc分配是可以睡眠 指定 GFP_KERNEL 标志
    如果kmalloc分配是不能睡眠 指定 GFP_ATOMIC 标志
    如果不需要物理上连续的页 vmalloc 函数 (vmalloc 的性能不如 kmalloc)
    如果需要高端内存 alloc_pages 函数获取 page 的地址,在用 kmap 之类的函数进行映射
    如果频繁撤销/创建教导的数据结构 建立slab高速缓存
  • 相关阅读:
    第15章 RCC—使用HSE/HSI配置时钟—零死角玩转STM32-F429系列
    第14章 启动文件详解—零死角玩转STM32-F429系列
    第13章 GPIO-位带操作—零死角玩转STM32-F429系列
    第12章 GPIO输入-按键检测—零死角玩转STM32-F429系列
    使用Vmware过程中,突然网络连接不上问题
    Yaf自定义autoload以实现Model文件和Controller文件命名区分
    Yaf学习过程中遇到的问题小记
    网页出现横向滚动条的原因可能是使用bootstrap不当引起
    微信小程序开发(一)
    nginx 启动报错找不到nginx.pid文件
  • 原文地址:https://www.cnblogs.com/x_wukong/p/7612457.html
Copyright © 2011-2022 走看看