题目:
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 / / / 3 2 1 1 3 2 / / 2 1 2 3
代码:
class Solution { public: int numTrees(int n) { vector<int> dp(n+1,0); dp[0] = 1; dp[1] = 1; for ( size_t i = 2; i < n+1; ++i ){ for ( size_t j = 0; j < i; ++j ){ dp[i] += dp[j] * dp[i-j-1]; } } return dp[n]; } };
tips:
1. ‘左子树可能数*右子树可能数’为所有以元素i为根节点的BST个数。
2. 如果总个数是n,则把根节点为1~n的情况都累加一遍,就是不重复的BST个数(由于要用到之前的计算结果,因此一维dp很合适)
===========================================
第二次过这道题,这题其实放DP里更好一些。
注意初始化的时候,一般都初始化为0。dp[0] dp[1]特殊处理。
class Solution { public: int numTrees(int n) { vector<int> dp(n+1,0); dp[0] = 1; dp[1] = 1; for ( int i=2; i<=n; ++i ) { for ( int j=0; j<i; ++j ) { dp[i] += dp[j] * dp[i-j-1]; } } return dp[n]; } };
class Solution { public: int numTrees(int n) { vector<int> dp(n+1,0); dp[0] = 1; dp[1] = 1; for ( int i=2; i<=n; ++i ) { for ( int j=0; j<i; ++j ) { dp[i] += dp[j] * dp[i-j-1]; } } return dp[n]; } };