题目:
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
代码:
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */ class Solution { public: ListNode* mergeKLists(vector<ListNode*>& lists) { if (lists.size()==0) return NULL; return Solution::mergeK(lists, 0, lists.size()-1); } static ListNode* mergeK(vector<ListNode*>& lists, int begin, int end ) { if ( begin==end ) return lists[begin]; if ( (begin+1)==end ) return Solution::mergeTwo(lists[begin], lists[end]); int mid = ( begin + end ) / 2; ListNode *firstHalf = Solution::mergeK(lists, begin, mid); ListNode *secondHalf = Solution::mergeK(lists, mid+1, end); return Solution::mergeTwo(firstHalf, secondHalf); } static ListNode* mergeTwo( ListNode *h1, ListNode *h2 ) { ListNode dummy(-1); ListNode *p = &dummy; while ( h1 && h2 ){ if ( h1->val<h2->val ){ p->next = h1; h1 = h1->next; } else{ p->next = h2; h2 = h2->next; } p = p->next; } p->next = h1 ? h1 : h2; return dummy.next; } };
tips:
多路归并写法。
=================================================
第二次过这道题,第一次没有写成归并的形式,结果超时了。
在网上查了一下这道题的时间复杂度分析:http://www.cnblogs.com/TenosDoIt/p/3673188.html
改成了归并的写法,AC了。
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */ class Solution { public: ListNode* mergeKLists(vector<ListNode*>& lists) { return Solution::divide(lists, 0, lists.size()-1); } ListNode* divide(vector<ListNode*>& lists, int begin, int end) { if ( begin>end ) return NULL; if ( begin==end ) return lists[begin]; int mid = (begin+end)/2; ListNode* l = Solution::divide(lists, begin, mid); ListNode* r = Solution::divide(lists, mid+1, end); return Solution::merge2Lists(l, r); } static ListNode* merge2Lists(ListNode* p1, ListNode* p2) { ListNode head(0); ListNode* p = &head; while ( p1 && p2 ) { if ( p1->val < p2->val ) { p->next = p1; p1 = p1->next; } else { p->next = p2; p2 = p2->next; } p = p->next; } p->next = p1 ? p1 : p2; return head.next; } };
用非递归又写了一个。
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */ class Solution { public: ListNode* mergeKLists(vector<ListNode*>& lists) { if ( lists.empty() ) return NULL; int length = lists.size(); while ( length>1 ) { int index = 0; int i=1; for ( ; i<length; i=i+2) { lists[index++] = Solution::merge2Lists(lists[i], lists[i-1]); } if ( length & 1 ) lists[index++] = lists[i-1]; length = index; } return lists[0]; } static ListNode* merge2Lists(ListNode* p1, ListNode* p2) { ListNode head(0); ListNode* p = &head; while ( p1 && p2 ) { if ( p1->val < p2->val ) { p->next = p1; p1 = p1->next; } else { p->next = p2; p2 = p2->next; } p = p->next; } p->next = p1 ? p1 : p2; return head.next; } };
=====================================================
之前两次过这道题,即使看了上面提到blog的解释,也没太直观理解为什么归并的效率高。
第三次过,有点儿顿悟了:其实就是插入排序和归并排序的效率区别;只不过这次归并的是链表。