zoukankan      html  css  js  c++  java
  • 【N-Queens】cpp

    题目:

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

    Given an integer n, return all distinct solutions to the n-queens puzzle.

    Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

    For example,
    There exist two distinct solutions to the 4-queens puzzle:

    [
     [".Q..",  // Solution 1
      "...Q",
      "Q...",
      "..Q."],
    
     ["..Q.",  // Solution 2
      "Q...",
      "...Q",
      ".Q.."]
    ]

    代码:

    class Solution {
    public:
            static vector<vector<string> > solveNQueens(int n)
            {
                vector<vector<string> > ret;
                if ( n==0 ) return ret;
                vector<string> tmp;
                vector<bool> colUsed(n,false);
                vector<bool> diagUsed1(2*n-1,false);
                vector<bool> diagUsed2(2*n-1,false);
                Solution::dfs(ret, tmp, n, colUsed, diagUsed1, diagUsed2);
                return ret;
            }
            static void dfs( 
                vector<vector<string> >& ret, 
                vector<string>& tmp, 
                int n,  
                vector<bool>& colUsed,
                vector<bool>& diagUsed1,
                vector<bool>& diagUsed2 )
            {
                const int row = tmp.size();
                if ( row==n )
                {
                    ret.push_back(tmp);
                    return;
                }
                string curr(n,'.');
                for ( size_t col = 0; col<n; ++col )
                {
                    if ( !colUsed[col] && !diagUsed1[col+n-1-row] && !diagUsed2[col+row] )
                    {
                        colUsed[col] = !colUsed[col];
                        diagUsed1[col+n-1-row] = !diagUsed1[col+n-1-row];
                        diagUsed2[col+row] = !diagUsed2[col+row];
                        curr[col] = 'Q';
                        tmp.push_back(curr);
                        Solution::dfs(ret, tmp, n, colUsed, diagUsed1, diagUsed2);
                        tmp.pop_back();
                        curr[col] = '.';
                        diagUsed2[col+row] = !diagUsed2[col+row];
                        diagUsed1[col+n-1-row] = !diagUsed1[col+n-1-row];
                        colUsed[col] = !colUsed[col];
                    }
                }
            }
    };

    tips:

    深搜写法:

    1. 找到一个解的条件是tmp的长度等于n

    2. 在一列中遍历每个位置,是否能够放置Q,并继续dfs;返回结果后,回溯tmp之前的状态,继续dfs。

    一开始遗漏了对角线也不能在有超过一个Q的条件,补上之后就AC了。

    ========================================

    第二次过这道题,string(n, '.')一直写成了string('.', n),改过来就AC了。

    class Solution {
    public:
            vector<vector<string> > solveNQueens(int n)
            {
                vector<vector<string> > ret;
                if ( n<1 ) return ret;
                vector<string> tmp;
                vector<bool> colUsed(n, false);
                vector<bool> r2l(2*n-1, false);
                vector<bool> l2r(2*n-1, false);
                Solution::dfs(ret, tmp, n, colUsed, r2l, l2r);
                return ret;
            }
            static void dfs( 
                vector<vector<string> >& ret, 
                vector<string>& tmp, 
                int n,
                vector<bool>& colUsed,
                vector<bool>& r2l,
                vector<bool>& l2r)
            {
                if ( tmp.size()==n )
                {
                    ret.push_back(tmp);
                    return;
                }
                int r = tmp.size();
                string row(n, '.');
                for ( int i=0; i<n; ++i )
                {
                    if ( colUsed[i] || r2l[i-r+n-1] || l2r[i+r] ) continue;
                    colUsed[i] = true;
                    r2l[i-r+n-1] = true;
                    l2r[i+r] = true;
                    row[i] = 'Q';
                    tmp.push_back(row);
                    Solution::dfs(ret, tmp, n, colUsed, r2l, l2r);
                    tmp.pop_back();
                    row[i] = '.';
                    colUsed[i] = false;
                    r2l[i-r+n-1] = false;
                    l2r[i+r] = false;
                }
            }
    };
  • 相关阅读:
    使用C# (.NET Core) 实现模板方法模式 (Template Method Pattern)
    使用C# (.NET Core) 实现单体设计模式 (Singleton Pattern)
    使用C# (.NET Core) 实现抽象工厂设计模式 (Abstract Pattern)
    使用C# (.NET Core) 实现简单工厂(Simple Factory) 和工厂方法设计模式 (Factory Method Pattern)
    使用 dynamic 类型让 ASP.NET Core 实现 HATEOAS 结构的 RESTful API
    使用静态基类方案让 ASP.NET Core 实现遵循 HATEOAS Restful Web API
    .NET Core/.NET之Stream简介
    使用C# (.NET Core) 实现装饰模式 (Decorator Pattern) 并介绍 .NET/Core的Stream
    MySQL 导入数据
    MySQL 导出数据
  • 原文地址:https://www.cnblogs.com/xbf9xbf/p/4532922.html
Copyright © 2011-2022 走看看