zoukankan      html  css  js  c++  java
  • tensorflow入门

    Start

    https://tensorflow.google.cn/tutorials/

    import tensorflow as tf
    a = 3
    # Create a variable.
    w = tf.Variable([[0.5,1.0]],dtype=tf.float64)
    x = tf.Variable([[2.0],[1.0]],dtype=tf.float64)
    print(w)
    
    y = tf.matmul(w, x)  
    
    
    #variables have to be explicitly initialized before you can run Ops
    init_op = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init_op)
        print (y.eval())

     Functions

    with tf.Session() as sess:
        
        print(sess.run(tf.zeros([3, 4], tf.int32))) # ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
          
        tensor = [[1, 2, 3], [4, 5, 6]]
        print(sess.run(tf.zeros_like(tensor))) # ==> [[0, 0, 0], [0, 0, 0]]
        print(sess.run(tf.ones([2, 3], tf.int32))) # ==> [[1, 1, 1], [1, 1, 1]]
    
        # 'tensor' is [[1, 2, 3], [4, 5, 6]]
        print(sess.run(tf.ones_like(tensor))) # ==> [[1, 1, 1], [1, 1, 1]]
    
        # Constant 1-D Tensor populated with value list.
        print(sess.run(tf.constant([1, 2, 3, 4, 5, 6, 7]))) # => [1 2 3 4 5 6 7]
              
        # Constant 2-D tensor populated with scalar value -1.
        print(sess.run(tf.constant(-1.0, shape=[2, 3])))  # => [[-1. -1. -1.]
                                                          #     [-1. -1. -1.]]
    
        print(sess.run(tf.linspace(10.0, 12.0, 3, name="linspace"))) # => [ 10.0  11.0  12.0]
    
        start = 3
        limit = 18
        delta = 3
        print(sess.run(tf.range(start, limit, delta))) # ==> [3, 6, 9, 12, 15]
    norm = tf.random_normal([2, 3], mean=-1, stddev=4)
    
    # Shuffle the first dimension of a tensor
    c = tf.constant([[1, 2], [3, 4], [5, 6]])
    shuff = tf.random_shuffle(c)
    
    # Each time we run these ops, different results are generated
    sess = tf.Session()
    print (sess.run(norm))
    print (sess.run(shuff))
    state = tf.Variable(0)
    new_value = tf.add(state, tf.constant(1))
    update = tf.assign(state, new_value)
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        print(sess.run(state))    
        for _ in range(3):
            sess.run(update)
            print(sess.run(state))

    # 输出
    # 0
    # 1
    # 2
    # 3
    import numpy as np
    a = np.zeros((3,3))
    ta = tf.convert_to_tensor(a)
    with tf.Session() as sess:
         print(sess.run(ta))

    输出
    [[0. 0. 0.]
    [0. 0. 0.]
    [0. 0. 0.]]
    input1 = tf.placeholder(tf.float32)
    input2 = tf.placeholder(tf.float32)
    output = tf.multiply(input1, input2)
    with tf.Session() as sess:
        print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))

    Model Save/Restore

    注意,如下两段代码,不能再同一文件中执行。

    v1 = tf.Variable(tf.random_normal([1,2]), name="v1")
    v2 = tf.Variable(tf.random_normal([2,3]), name="v2")

    因为v1和v2只能初始化一次,第二次执行时,name会被tensorflow自动分配成v1_1,v2_1

    Save:

    import tensorflow as tf
    
    v1 = tf.Variable(tf.random_normal([1,2]), name="v1")
    v2 = tf.Variable(tf.random_normal([2,3]), name="v2")
    print ("V1:", v1)  
    print ("V2:", v2)
    init_op = tf.global_variables_initializer()
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(init_op)
        print ("V1:",sess.run(v1))  
        print ("V2:",sess.run(v2))
        saver_path = saver.save(sess, "save/model.ckpt")
        print ("Model saved in file: ", saver_path)

    Restore:

    import tensorflow as tf
    v1 = tf.Variable(tf.random_normal([1,2]), name="v1")
    v2 = tf.Variable(tf.random_normal([2,3]), name="v2")
    print ("v1 =", v1)
    print ("v2 =", v2)
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, "save/model.ckpt")
        print ("Model restored")
        print ("V1:", sess.run(v1), ", V2:", sess.run(v2))
        print ("V1:", sess.run(v1), ", V2:", sess.run(v2))
  • 相关阅读:
    echars 折线图使用
    echars 饼图使用
    React native中DrawerNavigator,StackNavigator,TabNavigator导航栏使用
    React native 中 SectionList用法
    React native 中使用Fetch请求数据
    React native中使用XMLHttpRequest请求数据
    实现在WebView中返回上一级
    DatePickerAndroid用法
    Lambda
    .Net常见线程安全问题整理
  • 原文地址:https://www.cnblogs.com/xbit/p/9560786.html
Copyright © 2011-2022 走看看