zoukankan      html  css  js  c++  java
  • 2020系统综合实践 第7次实践作业 11组

    1.在树莓派中安装opencv库

    1.1 安装依赖

    sudo apt-get update && sudo apt-get upgrade
    sudo apt-get install build-essential cmake pkg-config
    sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
    sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
    sudo apt-get install libxvidcore-dev libx264-dev
    sudo apt-get install libgtk2.0-dev libgtk-3-dev
    sudo apt-get install libatlas-base-dev gfortran
    sudo apt-get install python2.7-dev python3-dev
    

    1.2 下载OpenCV源码

    • 查看老师博客时发现旧版本问题较多,使用较新版本
    cd ~
    wget -O opencv.zip https://github.com/Itseez/opencv/archive/4.1.2.zip
    unzip opencv.zip
    wget -O opencv_contrib.zip https://github.com/Itseez/opencv_contrib/archive/4.1.2.zip
    unzip opencv_contrib.zip
    

    1.3 安装pip

    wget https://bootstrap.pypa.io/get-pip.py
    sudo python get-pip.py
    sudo python3 get-pip.py
    

    1.4 安装Python虚拟机

    sudo pip install virtualenv virtualenvwrapper
    sudo rm -rf ~/.cache/pip
    
    • 配置~/.profile
    sudo nano ~/.profile
    export WORKON_HOME=$HOME/.virtualenvs 
    export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3 
    source /usr/local/bin/virtualenvwrapper.sh 
    export VIRTUALENVWRAPPER_VIRTUALENV=/usr/local/bin/virtualenv
    export VIRTUALENVWRAPPER_ENV_BIN_DIR=bin 
    
    • 使配置生效
    source ~/.profile
    
    • 使用python3安装虚拟机
    mkvirtualenv cv -p python3
    
    • 使配置生效并进入虚拟机,每次重新进入虚拟机都要键入
    source ~/.profile && workon cv
    
    • 安装numpy
    pip install numpy
    

    1.5 编译OpenCV

    cd ~/opencv-4.1.2/
    mkdir build
    cd build
    cmake -D CMAKE_BUILD_TYPE=RELEASE 
        -D CMAKE_INSTALL_PREFIX=/usr/local 
        -D INSTALL_PYTHON_EXAMPLES=ON 
        -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-4.1.2/modules 
        -D BUILD_EXAMPLES=ON ..
    
    • 查看版本
    • 编译前增大交换空间CONF_SWAPSIZE=1024
    sudo nano /etc/dphys-swapfile #虚拟机中sudo才可以修改
    
    • 开始编译
    sudo /etc/init.d/dphys-swapfile stop 
    sudo /etc/init.d/dphys-swapfile start
    make -j4 #开始编译
    

    1.6 安装OpenCV

    sudo make install
    sudo ldconfig
    
    • 查看
    ls -l /usr/local/lib/python2.7/dist-packages/
    ls -l /usr/local/lib/python3.7/site-packages/
    cd ~/.virtualenvs/cv/lib/python3.7/site-packages/ 
    ls
    ln -s /usr/local/lib/python3.7/site-packages/cv2 cv2
    
    • 验证安装结果
    source ~/.profile 
    workon cv 
    python 
    

    2.使用opencv和python控制树莓派的摄像头

    参考教程:还是可以参考 Adrian Rosebrock的 Accessing the Raspberry Pi Camera with OpenCV and Python;跑通教程的示例代码(有可能要调整里面的参数)

    • 激活cv虚拟环境
    source ~/.profile
    workon cv
    
    • 安装picamera
    pip install "picamera[array]"
    
    • 使用Python和OpenCV访问Raspberry Pi的单个映像
      打开一个新文件,命名test_image.py,然后插入以下示例代码:
    # import the necessary packages
    from picamera.array import PiRGBArray
    from picamera import PiCamera
    import time
    import cv2
    # initialize the camera and grab a reference to the raw camera capture
    camera = PiCamera()
    rawCapture = PiRGBArray(camera)
    # allow the camera to warmup
    time.sleep(0.1)
    # grab an image from the camera
    camera.capture(rawCapture, format="bgr")
    image = rawCapture.array
    # display the image on screen and wait for a keypress
    cv2.imshow("Image", image)
    cv2.waitKey(0)
    
    • 运行py文件
    python test_image.py
    
    • 使用Python和OpenCV访问Raspberry Pi的视频流
      打开一个新文件,命名test_video.py,然后插入以下示例代码:
    # import the necessary packages
    from picamera.array import PiRGBArray
    from picamera import PiCamera
    import time
    import cv2
    # initialize the camera and grab a reference to the raw camera capture
    camera = PiCamera()
    camera.resolution = (640, 480)
    camera.framerate = 32
    rawCapture = PiRGBArray(camera, size=(640, 480))
    # allow the camera to warmup
    time.sleep(0.1)
    # capture frames from the camera
    for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
    	# grab the raw NumPy array representing the image, then initialize the timestamp
    	# and occupied/unoccupied text
    	image = frame.array
    	# show the frame
    	cv2.imshow("Frame", image)
    	key = cv2.waitKey(1) & 0xFF
    	# clear the stream in preparation for the next frame
    	rawCapture.truncate(0)
    	# if the `q` key was pressed, break from the loop
    	if key == ord("q"):
    		break
    
    • 运行py文件
    python test_video.py
    

    3.利用树莓派的摄像头实现人脸识别

    人脸识别有开源的 python库face_recognition,这当中有很多示例代码,要求跑通 face_recognition的示例代码 facerec_on_raspberry_pi.py以及 facerec_from_webcam_faster.py

    • 安装所需库
    pip install dlib
    pip install face_recognition
    pip install numpy
    
    • 文件夹内放入相关文件

    facerec_on_raspberry_pi.py

    import face_recognition
    import picamera
    import numpy as np
    
    # Get a reference to the Raspberry Pi camera.
    # If this fails, make sure you have a camera connected to the RPi and that you
    # enabled your camera in raspi-config and rebooted first.
    camera = picamera.PiCamera()
    camera.resolution = (320, 240)
    output = np.empty((240, 320, 3), dtype=np.uint8)
    
    # Load a sample picture and learn how to recognize it.
    print("Loading known face image(s)")
    obama_image = face_recognition.load_image_file("obama_small.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    
    while True:
        print("Capturing image.")
        # Grab a single frame of video from the RPi camera as a numpy array
        camera.capture(output, format="rgb")
    
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(output)
        print("Found {} faces in image.".format(len(face_locations)))
        face_encodings = face_recognition.face_encodings(output, face_locations)
    
        # Loop over each face found in the frame to see if it's someone we know.
        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            match = face_recognition.compare_faces([obama_face_encoding], face_encoding)
            name = "<Unknown Person>"
    
            if match[0]:
                name = "Barack Obama"
    
            print("I see someone named {}!".format(name))
    
    • 运行代码,将摄像头对准照片可以看到识别成功

    facerec_from_webcam_faster.py

    import face_recognition
    import cv2
    import numpy as np
    
    # Get a reference to webcam #0 (the default one)
    video_capture = cv2.VideoCapture(0)
    
    # Load a sample picture and learn how to recognize it.
    obama_image = face_recognition.load_image_file("obama.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
    
    # Load a second sample picture and learn how to recognize it.
    biden_image = face_recognition.load_image_file("biden.jpg")
    biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
    
    # Create arrays of known face encodings and their names
    known_face_encodings = [
        obama_face_encoding,
        biden_face_encoding
    ]
    known_face_names = [
        "Barack Obama",
        "Joe Biden"
    ]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True
    
    while True:
        # Grab a single frame of video
        ret, frame = video_capture.read()
    
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # # If a match was found in known_face_encodings, just use the first one.
                # if True in matches:
                #     first_match_index = matches.index(True)
                #     name = known_face_names[first_match_index]
    
                # Or instead, use the known face with the smallest distance to the new face
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
    
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    
    • 识别成功

    4.结合微服务的进阶任务

    使用微服务,部署 opencv的 docker容器(要能够支持 arm),并在 opencv的 docker容器中跑通(3)的示例代码 facerec_on_raspberry_pi.py
    选做:在 opencv的 docker容器中跑通步骤(3)的示例代码facerec_from_webcam_faster.py

    部署opencv的docker容器

    • 脚本安装docker
    sudo curl -sSL https://get.docker.com | sh
    
    • 加用户到docker组,重新登陆生效
    sudo usermod -aG docker pi
    exit && ssh pi@raspiberry
    
    • 查看版本
    docker --version
    
    • 配置docker的镜像加速
    sudo nano /etc/docker/daemon.json
    
    • 重启生效
    service docker restart
    
    • 拉取arm可用的docker镜像
    docker pull sixsq/opencv-python
    
    • 进入容器并安装所需库
    docker run -it sixsq/opencv-python /bin/bash
    pip install "picamera[array]" dlib face_recognition
    
    • 安装成功后退出容器并commit
    docker commit [22ee2e36d2e2] face_recognition_opencv
    
    • 建立dockerfile目录
    • Dockerfile
    FROM face_recognition_opencv
    RUN mkdir /myapp
    WORKDIR /myapp
    COPY myapp .
    
    • build镜像
    docker build -t ex7_opencv .
    

    在容器中跑通示例代码facerec_on_raspberry_pi.py

    • 进入容器运行代码
    docker run -it --device=/dev/vchiq --device=/dev/video0 --name ex7_opencv ex7_opencv
    python3 facerec_on_raspberry_pi.py
    

    选做:在容器中跑通facerec_from_webcam_faster.py

    • 在Windows系统中安装Xming和Putty
    • 检查树莓派的ssh配置中的X11是否开启
    cat /etc/ssh/sshd_config
    
    • 打开putty,connection->SSH->Auth->X11,勾起Enable X11 forwarding
    • 使用Putty的ssh登录树莓派查看DISPLAY环境变量值
    printenv
    
    • 编写run.sh
    #sudo apt-get install x11-xserver-utils
    xhost +
    sudo docker run -it --rm 
    	-v /tmp/.X11-unix:/tmp/.X11-unix 
    	-e DISPLAY=$DISPLAY 
    	-e QT_X11_NO_MITSHM=1 
      	--device=/dev/vchiq 
    	--device=/dev/video0 
    	--name ex7_opencvgui3 
    	facerc_gui 
    	python3 facerec_from_webcam_faster.py
    
    • 打开终端运行run.sh
    sh run.sh
    

    5.实验记录

    记录遇到的问题和解决方法,提供小组成员名单、分工、各自贡献以及在线协作的图片

    问题解决

    问题① 配置~/.profile时报错

    解决: 参考此篇

    问题② 安装numpy时报错

    解决: 网络问题,多尝试几次就成功了

    问题③ 编译OpenCV时-D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-4.1.2/modules 里版本为3.3.0,然后报错

    解决: 删除build文件,修改版本重来一次

    问题④ pip安装face_recognition超时

    解决: 下载whl,用winscp导入到树莓派进行离线安装

    • winscp登陆:
    • 离线安装

    问题⑤ 运行facerec_from_webcam_faster.py报错

    解决: 是由于之前运行第一个例子后Ctrl+Z关闭了摄像头

    问题⑥ 在容器内pip安装face_recognition再次超时
    解决: 同样离线安装,但要先拷贝whl到容器中:

    问题⑦ 使用Putty的ssh登录树莓派后找不到DISPLAY环境变量值
    解决: 参考

    小组成员及分工

    姓名 学号 分工
    叶艳玲 031702208 实际操作 问题解决
    王星雨 031702212 博客撰写 问题解决
    李享 031702509 资料整理 问题解决

    在线协作

    通过屏幕分享的方式直播操作,共同解决问题

  • 相关阅读:
    angularjs1.6.4中使用ng-table出现data.slice is not a function的问题
    使用sql语句获取数据库表的信息
    IIS部署web,字体404的问题
    SQL中partition关键字的使用
    asp.net 配置二级域名的共享session,并实现sso单点登录
    同一浏览器中同一JavaWeb程序不共享session方法
    Liquibase的使用
    对象并不一定都是在堆上分配内存的
    阿里面试题,为什么wait()方法要放在同步块中?
    粗浅看 Tomcat系统架构分析
  • 原文地址:https://www.cnblogs.com/xbrucken/p/13044796.html
Copyright © 2011-2022 走看看