zoukankan      html  css  js  c++  java
  • P1875 佳佳的魔法药水

    题目背景

    发完了 (k) 张照片,佳佳却得到了一个坏消息:他的 (MM) 得病了!佳佳和大家一样焦急万分!治好 (MM) 的病只有一种办法,那就是传说中的 (0) 号药水 ……怎么样才能得到 (0) 号药水呢?你要知道佳佳的家境也不是很好,成本得足够低才行……

    题目描述

    得到一种药水有两种方法:可以按照魔法书上的指导自己配置,也可以到魔法商店里去 买——那里对于每种药水都有供应,虽然有可能价格很贵。在魔法书上有很多这样的记载:

    (1)(A) 药水混合 (1)(B) 药水就可以得到 (1)(C) 药水。(至于为什么 (1+1=1),因为……这是魔法世界)好了,现在你知道了需要得到某种药水,还知道所有可能涉及到的药水的价格以及魔法书上所有的配置方法,现在要问的就是:
    (1.) 最少花多少钱可以配制成功这种珍贵的药水;

    (2.) 共有多少种不同的花费最少的方案(两种可行的配置方案如果有任何一个步骤不同则视为不同的)。假定初始时你手中并没有任何可以用的药水。

    输入格式

    第一行有一个整数 (N(N<=1000)),表示一共涉及到的药水总数。药水从 (0)~(N-­1) 顺序编号,(0) 号药水就是最终要配制的药水。

    第二行有 (N) 个整数,分别表示从 (0)~(N-­1) 顺序编号的所有药水在魔法商店的价格(都表示 (1) 份的价格)。

    第三行开始,每行有 (3) 个整数 (A,B,C),表示 (1)(A) 药水混合 (1)(B) 药水就可以得到 (1)(C) 药水。注意,某两种特定的药水搭配如果能配成新药水的话,那么结果是唯一的。也就是 说不会出现某两行的 (A,B) 相同但 (C) 不同的情况。

    输入以一个空行结束。

    输出格式

    输出两个用空格隔开的整数,分别表示得到 (0) 号药水的最小花费以及花费最少的方案的个数。

    输入输出样例

    输入
    7 
    10 5 6 3 2 2 3 
    1 2 0 
    4 5 1 
    3 6 2
    
    输出
    10 3
    

    说明/提示

    样例说明:

    最优方案有 (3) 种,分别是:直接买 (0) 号药水;买 (4) 号药水、(5) 号药水配制成 (1) 号药水,直接买 (2) 号药水,然后配制成 (0) 号药水;买 (4) 号药水、(5) 号药水配制成 (1) 号药水,买 (3) 号药水、(6) 号药水配制成 (2),然后配制成 (0)

    Solution

    非常巧妙的最短路问题,模型转化过程值得我们学习。
    读完题目后,对于 “(A+B->C)” 的条件我们很容易想到连两条边 ((C->A),(C->B)),然后跑一次树形 (dp),但是实际上不可行,因为可能存在环
    既然树形 (dp) 不可行,那么我们考虑最短路算法,并且第二问的最短路计数更加证实了正解做法。
    当时考虑出来要用最短路算法,但是在连边和如何跑最短路上出现了问题,因为貌似有多个起点。
    但是当我们从最短路算法本质上再来想一想,问题就迎刃而解了:
    考虑一个药水 (C) 如何花费最小代价:
    (1.) 直接到魔法商店购买;
    (2.)(A)(B) 合成,且保证 (A)(B) 的代价最小。
    如果我们考虑 (C) 由谁合成((C<-A+B)),问题还是不好解决;但换个角度,我们考虑 (A)(B) 能合成谁((A+B->C)),就好做多了。
    为什么呢?如果考虑 (C<-A+B),如果当前 (A)(B) 不是最优的,那么算出来的 (C) 肯定不是最优的,造成了无用的计算,使得复杂度直接爆炸!
    而如果我们开个数组 (vis[i]) 记录哪些药水已经得出了最小花费(记这样的药水为 (k)),每次取一个花费最小的 (k),再枚举另一个已经得出最小花费的药水 (k'),如果它们能合成药水 (d),那么 (d) 可能更新到最小值。
    发现我们上述的过程类似于 (dijkstra) 算法,直接模拟即可,注意另开数组维护最短路条数。

    Code

    #include<algorithm>
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #define ll long long
    #define db double
    using namespace std;
    inline int read()
    {
    	char ch=getchar();
    	int a=0,x=1;
    	while(ch<'0'||ch>'9')
    	{
    		if(ch=='-') x=-x;
    		ch=getchar();
    	}
    	while(ch>='0'&&ch<='9')
    	{
    		a=(a<<1)+(a<<3)+(ch^48);
    		ch=getchar();
    	}
    	return a*x;
    }
    const int N=1005;
    int n,Edge;
    int cost[N],vis[N],f[N][N];
    ll cnt[N];
    void Dijkstra()
    {
    	for(int i=1;i<n;i++)                    //进行n-1轮松弛操作               
    	{
    		int Min=1e9,u;
    		for(int j=1;j<=n;j++)               //取一个得出最小花费的药水来更新别的药水 
    		{
    			if(!vis[j]&&cost[j]<Min)        //只取没进行过松弛操作的j,以免造成时间浪费 
    			{
    				u=j;Min=cost[j];        
    			}
    		}
    		vis[u]=1;                           //记录一下u点已经松弛过它的出边终点了 
    		for(int v=1;v<=n;v++)
    		{
    			if(vis[v]&&f[u][v])             //找另外已经得出最小花费的药水(松弛过了其他点的药水) 
    			{
    				int w=f[u][v];              //它们所能合成的药水 
    				if(cost[w]==cost[u]+cost[v])//如果通过u和v合成的花费和原来一样 
    				{
    					cnt[w]+=cnt[u]*cnt[v];  //方法又多了cnt[u]*cnt[v]种 
    				}
    				else if(cost[w]>cost[u]+cost[v]) //如果花费更少 
    				{
    					cost[w]=cost[u]+cost[v];//松弛成功 
    					cnt[w]=cnt[u]*cnt[v];   //更新记录方案数 
    				}
    			}
    		}
    	}
    }
    int main()
    {
    	n=read();
    	for(int i=1;i<=n;i++) cost[i]=read();   //每个药水从商店购买的初始花费 
    	for(int i=1;i<=n;i++) cnt[i]=1ll;       //记录最小花费方案数,初始化为1,表示从商店购买 
    	int u,v,w;
    	while(cin>>u>>v>>w)
    	{
    		u++;v++;w++;                        //编号+1 
    		f[u][v]=f[v][u]=w;                  //表示 u+v->w 
    	}
    	Dijkstra();
    	printf("%d %lld
    ",cost[1],cnt[1]);     //输出最小花费和方案数 
    	return 0;
    }
    
    
  • 相关阅读:
    Burp Suite抓包使用步骤
    抓包工具Burp Suite安装步骤(待补充)
    mysql版本和模式查询
    git仓库下拉和上传
    git仓库个人和企业版新增仓库和成员
    漏洞扫描工具acunetix破解安装步骤
    漏洞扫描工具acunetix12会遇到的问题
    memcached缓存:安装和清缓存
    oracle数据库备份、还原命令及常见问题(待补充)
    Linux中,关闭selinux
  • 原文地址:https://www.cnblogs.com/xcg123/p/14059988.html
Copyright © 2011-2022 走看看