zoukankan      html  css  js  c++  java
  • 数据科学第一战:Iris的Pyhton数据分析

    用pyhton具体实现机器学习算法感觉并没有Octave方便

    幸好python有专门的scikit-learn库来直接用,所以以后的策略就是用Octave学习和理解算法

    用python应用库算法解决Kaggle问题

    1,Iris数据集逻辑回归Python版,数据地址:https://www.kaggle.com/chuckyin/iris-datasets

    import numpy as np
    import pandas as pd
    from sklearn.linear_model import LogisticRegression
    from sklearn.cross_validation import train_test_split
    
    
    df = pd.read_csv('iris.csv')
    
    y = df['Species']
    X = df.drop('Species', axis=1)
    
    x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
    
    clf = LogisticRegression()
    clf.fit(x_train, y_train)
    
    score = clf.score(x_test, y_test)
    print(score)

     分类器的正确率只有93.3%,这还是没有把数据集分为训练集和测试集,接下来分20%的数据集为测试集,80%的数据集为训练集

     1 import numpy as np
     2 import pandas as pd
     3 from sklearn.linear_model import LogisticRegression
     4 
     5 
     6 df_train = pd.read_csv('iris_train.csv')
     7 df_test = pd.read_csv('iris_test.csv')
     8 y_train = y = df_train['Species']
     9 x_train = X = df_train.drop('Species', axis=1)
    10 y_test = y = df_test['Species']
    11 x_test = X = df_test.drop('Species', axis=1)
    12 clf = LogisticRegression()
    13 clf.fit(x_train, y_train)
    14 
    15 score = clf.score(x_test, y_test)
    16 print(score)

    正确率只有66.7%,数据太少,只有150个样例,4个特征,接下来换神经网络试试

    import numpy as np
    import
    pandas as pd def sigmoid(z): return 1 / (1 + np.exp(-z)) def sigmoidGradient(z): return (1 - sigmoid(z)) * sigmoid(z) def predict(X, theta1, theta2): # forwardPropagation m = len(X) a1 = np.hstack((np.ones([m, 1]), X)) z2 = np.dot(a1, theta1) a2 = sigmoid(z2) a2 = np.hstack((np.ones([m, 1]), a2)) z3 = np.dot(a2, theta2) # print (z3) a3 = sigmoid(z3) return a3 def convert(y): t = y.values sp = np.unique(t) tt = np.zeros([len(t), len(sp)]) for i in range(len(t)): for j in range(len(sp)): if t[i] == sp[j]: tt[i][j] = 1 return tt def getData(fileName): df_train = pd.read_csv(fileName) y = convert(df_train['Species']) X = df_train.drop(['Id', 'Species'], axis=1).values return X, y X_train, y_train = getData('iris_train.csv') X_test, y_test = getData('iris_test.csv') np.random.seed(1) theta1 = 2 * np.random.rand(5, 4) - 1 theta2 = 2 * np.random.rand(5, 3) - 1 for iter in range(1, 20000): # forwardPropagation m = len(X_train) a1 = np.hstack((np.ones([m, 1]), X_train)) z2 = a1.dot(theta1) a2 = sigmoid(z2) a2 = np.hstack((np.ones([m, 1]), a2)) z3 = a2.dot(theta2) a3 = sigmoid(z3) # backPropagation delta3 = (a3 - y_train).T   

    if (iter % 10000) == 0: print("Error:" + str(np.mean(np.abs(delta3)))) grad2 = np.dot(a2.T, delta3.T) delta2 = np.dot(theta2[1:, ], delta3) * sigmoidGradient(z2.T) #delta2 = np.dot(theta2[1:, ], delta3) * (1 - a2.T[1:, ]) * a2.T[1:, ] grad1 = np.dot(a1.T, delta2.T) theta1 -= grad1 / m theta2 -= grad2 / m res = np.argmax(predict(X_test, theta1, theta2), axis=1) print(np.mean(np.argmax(y_test, axis = 1) == res))

    还是神经网络强大,100%的准确率,当然也是因为数据偏少,偏差值收敛,每迭代10000次的偏差值

    Error:0.013312372435
    Error:0.0119592971635
    Error:0.0115683980319

    加上正则化,准确率准确率虽然没有降低(也可能是数据少), 但是偏差值发散,每迭代10000次的偏差值

    Error:0.0491758284265
    Error:0.0457085051291
    Error:0.0523013950821

    import numpy as np
    import pandas as pd
    
    def sigmoid(z):
        return 1 / (1 + np.exp(-z))
    
    
    def sigmoidGradient(z):
        return (1 - sigmoid(z)) * sigmoid(z)
    
    def predict(X, theta1, theta2):
        # forwardPropagation
        m = len(X)
    
        a1 = np.hstack((np.ones([m, 1]), X))
    
        z2 = np.dot(a1, theta1)
        a2 = sigmoid(z2)
        a2 = np.hstack((np.ones([m, 1]), a2))
    
        z3 = np.dot(a2, theta2)
        # print (z3)
        a3 = sigmoid(z3)
        return a3
    
    
    def convert(y):
        t = y.values
        sp = np.unique(t)
        tt = np.zeros([len(t), len(sp)])
        for i in range(len(t)):
            for j in range(len(sp)):
                if t[i] == sp[j]:
                    tt[i][j] = 1
        return tt
    
    
    def getData(fileName):
        df_train = pd.read_csv(fileName)
        y = convert(df_train['Species'])
        X = df_train.drop(['Id', 'Species'], axis=1).values
        return X, y
    
    X_train, y_train = getData('iris_train.csv')
    X_test, y_test = getData('iris_test.csv')
    
    np.random.seed(1)
    
    theta1 = 2 * np.random.rand(5, 4) - 1
    theta2 = 2 * np.random.rand(5, 3) - 1
    
    lamb = 0.1
    
    for iter in range(1, 30001):
    
        # forwardPropagation
        m = len(X_train)
    
        a1 = np.hstack((np.ones([m, 1]), X_train))
    
        z2 = a1.dot(theta1)
        a2 = sigmoid(z2)
        a2 = np.hstack((np.ones([m, 1]), a2))
    
        z3 = a2.dot(theta2)
        a3 = sigmoid(z3)
    
        # backPropagation
    
        delta3 = (a3 - y_train).T
    
        if (iter % 10000) == 0:
            print("Error:" + str(np.mean(np.abs(delta3))))
    
        grad2 = np.dot(a2.T, delta3.T) + lamb * theta2
        grad2[0, :] -= lamb * theta2[0, :]
    
        delta2 = np.dot(theta2[1:, ], delta3) * sigmoidGradient(z2.T)
        delta2 = np.dot(theta2[1:, ], delta3) * (1 - a2.T[1:, ]) * a2.T[1:, ]
    
        grad1 = np.dot(a1.T, delta2.T) + lamb * theta1
        grad1[0, :] -= lamb * theta1[0, :]
    
        theta1 -= grad1 / m
    
        theta2 -= grad2 / m
    
    
    
    res = np.argmax(predict(X_test, theta1, theta2), axis=1)
    
    print(np.mean(np.argmax(y_test, axis = 1) == res))
     
  • 相关阅读:
    Linux系统中压缩与解压缩
    Linux系统中的信息查找命令
    Paraview处理fluent计算结果
    insert_stream 中的 insert_every报错
    LIGGGHTS出现错误提示ERROR: Volume expectancy too small
    影响CFD计算量的因素分析及在OpenFOAM中的参数调整
    常见物理量的单位在OpenFOAM中的形式
    LIGGGHTS运行命令
    汇编系列10-内存
    汇编系列9-通用寄存器
  • 原文地址:https://www.cnblogs.com/xchaos/p/6624155.html
Copyright © 2011-2022 走看看