zoukankan      html  css  js  c++  java
  • HBase学习笔记1

    转载请标注原链接:http://www.cnblogs.com/xczyd/p/5577124.html

    客户在使用HBase的时候,经常会抱怨说写入太慢,并发上不去等等。从前我遇到这种情况,一般都二话不说,直接去看HBase集群的负载,看看有什么性能瓶颈等等。

    某老司机说,且慢,先看看用户怎么写的客户端访问HBase集群的代码。

    于是花了一些时间去看。

    不看不知道,一看就吓尿。客户(也包括我们自己的实施)写出来的客户端,很多时候存在很多低级错误,比如:

    (1)滥用sychronize;

    (2)创建了连接不释放;

    (3)明明只需要调用一次的API,却进行了多次调用,要是碰巧遇到比较花时间的API,那性能就可想而知了;

    (4)其他各种幺蛾子...

    为此,本篇仅从HBase的Java API入手,通过源码分析和简单的实验,找到最合适Java API调用方法(主要服务于高并发场景)。

    如果对HBase的Java API不熟悉的话,可以先去官网看一下文档。

    下面开始正文:

    使用Java API与HBase集群交互时,需要先创建一个HTable的实例,再使用该实例提供的方法来进行插入/删除/查询等操作。

    要创建HTable对象,要先创建一个包含了HBase集群信息的配置实例Configuration conf,其一般创建方法如下:

    Configuration conf = HBaseConfiguration.create();
    //设置HBase集群的IP和端口
    conf.set("hbase.zookeeper.quorum", "XX.XXX.X.XX");
    conf.set("hbase.zookeeper.property.clientPort", "2181");

    在拥有了conf之后,可以通过HTable提供的如下两种构造方法来创建HTable实例:

    方法一:直接利用conf来创建HTable实例

    对应的构造函数如下:

    public HTable(Configuration conf, final TableName tableName)
      throws IOException {
        this.tableName = tableName;
        this.cleanupPoolOnClose = this.cleanupConnectionOnClose = true;
        if (conf == null) {
          this.connection = null;
          return;
        }
        this.connection = HConnectionManager.getConnection(conf);
        this.configuration = conf;
    
        this.pool = getDefaultExecutor(conf);
        this.finishSetup();
     }

    注意红色部分的代码。在这种构造方法中,会调用HConnectionManager的getConnection函数,这个函数以conf作为输入参数,来获取了一个HConnection的实例connection。熟悉odbc,jdbc的话,会知道使用Java API进行数据库操作的时候,都会创建一个类似的connection/connection pool来维护一些数据库与客户端之间相互的连接。对于Hbase来说,承担类似角色的就是HConnection。不过与oracle不同的一点是,HConnection实际上去连接的并不是HBase集群本身,而是维护其关键数据信息的Zookeeper(简称ZK)集群。有关ZK的内容在这里不做展开,不熟悉的话可以单纯地理解为一个独立的元信息管理角色。回过来看getConnection函数,其具体实现如下:

    public static HConnection getConnection(final Configuration conf)
      throws IOException {
        HConnectionKey connectionKey = new HConnectionKey(conf);
        synchronized (CONNECTION_INSTANCES) {
          HConnectionImplementation connection = CONNECTION_INSTANCES.get(connectionKey);
          if (connection == null) {
            connection = (HConnectionImplementation)createConnection(conf, true);
            CONNECTION_INSTANCES.put(connectionKey, connection);
          } else if (connection.isClosed()) {
            HConnectionManager.deleteConnection(connectionKey, true);
            connection = (HConnectionImplementation)createConnection(conf, true);
            CONNECTION_INSTANCES.put(connectionKey, connection);
          }
          connection.incCount();
          return connection;
        }
    }

    其中,CONNECTION_INSTANCES的类型是LinkedHashMap<HConnectionKey,HConnectionImplementation>。所谓HConnectionImplementation其实就是HConnection的具体实现。继续注意红色部分的三行代码。第一行,通过conf创建了一个HConnectionKey的实例connectionKey;第二行,去CONNECTION_INSTANCES中查找是否存在与connectionKey对应的一个HConnection的实例;第三行,如果不存在,那么调用createConnection来创建一个HConnection的实例,否则直接返回刚才从Map中查找得到的HConnection对象

    不嫌麻烦,再看一下HConnectionKey的构造函数和重写的hashCode函数,代码分别如下:

    HConnectionKey(Configuration conf) {
        Map<String, String> m = new HashMap<String, String>();
        if (conf != null) {
          for (String property : CONNECTION_PROPERTIES) {
            String value = conf.get(property);
            if (value != null) {
              m.put(property, value);
            }
          }
        }
        this.properties = Collections.unmodifiableMap(m);
    
        try {
          UserProvider provider = UserProvider.instantiate(conf);
          User currentUser = provider.getCurrent();
          if (currentUser != null) {
            username = currentUser.getName();
          }
        } catch (IOException ioe) {
          HConnectionManager.LOG.warn("Error obtaining current user, skipping username in HConnectionKey", ioe);
        }
    }
    public int hashCode() {
        final int prime = 31;
        int result = 1;
        if (username != null) {
          result = username.hashCode();
        }
        for (String property : CONNECTION_PROPERTIES) {
          String value = properties.get(property);
          if (value != null) {
            result = prime * result + value.hashCode();
          }
        }
    
        return result;
    }

    可以看到,hashCode函数被重写以后,其返回值实际上是username的hashCode函数的返回值,而username来自于currentuser,currentuser又来自于provider,provider是由conf创建的。可以看出,只要有相同的conf,就能创建出相同的username,也就能保证HConnectionKey的hashCode函数被重写以后,能够在username相同时返回相同的值。而CONNECTION_INSTANCES是一个LinkedHashMap,其get函数会调用HConnectionKey的hashCode函数来判断该对象是否已经存在。因此,getConnection函数的本质就是根据conf信息返回connection对象,对每一个内容相同的conf,只会返回一个connection

    方法二:调用createConnection方法来显式地创建Hconnection的实例,再将其作为输入参数来创建HTable实例

    createConnection方法和Htable对应的构造函数分别如下:

    public static HConnection createConnection(Configuration conf) throws IOException {
        UserProvider provider = UserProvider.instantiate(conf);
        return createConnection(conf, false, null, provider.getCurrent());
    }
    
    static HConnection createConnection(final Configuration conf, final boolean managed,final ExecutorService pool, final User user)
    throws IOException { String className = conf.get("hbase.client.connection.impl",HConnectionManager.HConnectionImplementation.class.getName()); Class<?> clazz = null; try { clazz = Class.forName(className); } catch (ClassNotFoundException e) { throw new IOException(e); } try { // Default HCM#HCI is not accessible; make it so before invoking. Constructor<?> constructor = clazz.getDeclaredConstructor(Configuration.class, boolean.class, ExecutorService.class, User.class); constructor.setAccessible(true); return (HConnection) constructor.newInstance(conf, managed, pool, user); } catch (Exception e) { throw new IOException(e); } }
    public HTable(TableName tableName, HConnection connection) throws IOException {
        this.tableName = tableName;
        this.cleanupPoolOnClose = true;
        this.cleanupConnectionOnClose = false;
        this.connection = connection;
        this.configuration = connection.getConfiguration();
    
        this.pool = getDefaultExecutor(this.configuration);
        this.finishSetup();
     }

    可以看出,这种构造HTable的方法会通过反射来创建一个新的HConnection实例,而不像方法一中那样共享一个HConnection实例。

    值得一提的是,通过此种方法创建出来的HConnection,是需要在不再使用的时候显式调用close方法去释放掉的,否则容易造成端口占用等问题。

    那么,上述两种方法,在执行插入/删除/查找的时候,性能如何呢?不妨先从代码角度分析一下。为了简便,先分析HTable在执行put(插入)操作时具体做的事情。

    HTable的put函数如下:

    public void put(final Put put) throws InterruptedIOException, RetriesExhaustedWithDetailsException {
        doPut(put);
        if (autoFlush) {
          flushCommits();
        }
    }
    
    private void doPut(Put put) throws InterruptedIOException, RetriesExhaustedWithDetailsException {
        if (ap.hasError()){
          writeAsyncBuffer.add(put);
          backgroundFlushCommits(true);
        }
    
        validatePut(put);
    
        currentWriteBufferSize += put.heapSize();
        writeAsyncBuffer.add(put);
    
        while (currentWriteBufferSize > writeBufferSize) {
          backgroundFlushCommits(false);
        }
    }
    
    private void backgroundFlushCommits(boolean synchronous) throws InterruptedIOException, RetriesExhaustedWithDetailsException {
        try {
          do {
            ap.submit(writeAsyncBuffer, true);
          } while (synchronous && !writeAsyncBuffer.isEmpty());
    
          if (synchronous) {
            ap.waitUntilDone();
          }
    
          if (ap.hasError()) {
            LOG.debug(tableName + ": One or more of the operations have failed -" +
                " waiting for all operation in progress to finish (successfully or not)");
            while (!writeAsyncBuffer.isEmpty()) {
              ap.submit(writeAsyncBuffer, true);
            }
            ap.waitUntilDone();
    
            if (!clearBufferOnFail) {
              // if clearBufferOnFailed is not set, we're supposed to keep the failed operation in the
              //  write buffer. This is a questionable feature kept here for backward compatibility
              writeAsyncBuffer.addAll(ap.getFailedOperations());
            }
            RetriesExhaustedWithDetailsException e = ap.getErrors();
            ap.clearErrors();
            throw e;
          }
        } finally {
          currentWriteBufferSize = 0;
          for (Row mut : writeAsyncBuffer) {
            if (mut instanceof Mutation) {
              currentWriteBufferSize += ((Mutation) mut).heapSize();
            }
          }
        }
    }

    如红色部分所表示,调用顺序是put->doPut->backgroundFlushCommits->ap.submit,其中ap是类AsyncProcess的对象。因此追踪到AsyncProcess类,其代码如下:

    public void submit(List<? extends Row> rows, boolean atLeastOne) throws InterruptedIOException {
        submitLowPriority(rows, atLeastOne, false);
    }
    
    public void submitLowPriority(List<? extends Row> rows, boolean atLeastOne, boolean isLowPripority) throws InterruptedIOException {
        if (rows.isEmpty()) {
          return;
        }
    
        // This looks like we are keying by region but HRegionLocation has a comparator that compares
        // on the server portion only (hostname + port) so this Map collects regions by server.
        Map<HRegionLocation, MultiAction<Row>> actionsByServer = new HashMap<HRegionLocation, MultiAction<Row>>();
        List<Action<Row>> retainedActions = new ArrayList<Action<Row>>(rows.size());
    
        long currentTaskCnt = tasksDone.get();
        boolean alreadyLooped = false;
    
        NonceGenerator ng = this.hConnection.getNonceGenerator();
        do {
          if (alreadyLooped){
            // if, for whatever reason, we looped, we want to be sure that something has changed.
            waitForNextTaskDone(currentTaskCnt);
            currentTaskCnt = tasksDone.get();
          } else {
            alreadyLooped = true;
          }
    
          // Wait until there is at least one slot for a new task.
          waitForMaximumCurrentTasks(maxTotalConcurrentTasks - 1);
    
          // Remember the previous decisions about regions or region servers we put in the
          //  final multi.
          Map<Long, Boolean> regionIncluded = new HashMap<Long, Boolean>();
          Map<ServerName, Boolean> serverIncluded = new HashMap<ServerName, Boolean>();
    
          int posInList = -1;
          Iterator<? extends Row> it = rows.iterator();
          while (it.hasNext()) {
            Row r = it.next();
            HRegionLocation loc = findDestLocation(r, posInList);
    
            if (loc == null) { // loc is null if there is an error such as meta not available.
              it.remove();
            } else if (canTakeOperation(loc, regionIncluded, serverIncluded)) {
              Action<Row> action = new Action<Row>(r, ++posInList);
              setNonce(ng, r, action);
              retainedActions.add(action);
              addAction(loc, action, actionsByServer, ng);
              it.remove();
            }
          }
        } while (retainedActions.isEmpty() && atLeastOne && !hasError());
    
        HConnectionManager.ServerErrorTracker errorsByServer = createServerErrorTracker();
        sendMultiAction(retainedActions, actionsByServer, 1, errorsByServer, isLowPripority);
    }
    
    private HRegionLocation findDestLocation(Row row, int posInList) {
      if (row == null) throw new IllegalArgumentException("#" + id + ", row cannot be null");
      HRegionLocation loc = null;
      IOException locationException = null;
      try {
        loc = hConnection.locateRegion(this.tableName, row.getRow());
        if (loc == null) {
          locationException = new IOException("#" + id + ", no location found, aborting submit for" +
              " tableName=" + tableName +
              " rowkey=" + Arrays.toString(row.getRow()));
        }
      } catch (IOException e) {
        locationException = e;
      }
      if (locationException != null) {
        // There are multiple retries in locateRegion already. No need to add new.
        // We can't continue with this row, hence it's the last retry.
        manageError(posInList, row, false, locationException, null);
        return null;
      }
    
      return loc;
    }

    这里代码的主要实现机制是异步调用,也就是说,并非每一次put操作都是直接往HBase里面写数据的,而是等到缓存区域内的数据多到一定程度(默认设置是2M),再进行一次写操作。当然这次操作在Server端应当还是要排队执行的,具体执行机制这里不作展开。可以确定的是,HConnection在插入/查询/删除的Java API中,只是起到一个定位RegionServer的作用,在定位到RegionServer之后,操作都是由client端通过rpc调用完成的,与客户端创建的connection的数目无关另外,locateRegion其实只有在没有命中缓存的时候才会进行rpc通信,其他时候都是直接从缓存中获取RegionServer信息,详情可以查看locateRegion的源码,这里也不再展开。

    代码分析告一段落,通过分析可以确定,createConnection的方法创建出大量的HConnection并不会对写入性能有任何帮助。相反,由于白白浪费了资源,还会比getConnection更慢。但是慢多少,无法仅凭代码作出判断。

    不妨简单做一个实验来验证上述论断:

    服务器环境:四台linux服务器组成的HBase集群, 内存64G,ping一次平均约5ms(严谨一点的话应该再提供一下cpu核数、频率,以及磁盘转速等信息)

    客户端环境:在Mac上装的ubuntu虚拟机,分配内存10G,CPU、网络和磁盘读写速度都要比物理机慢不少,但是不影响结论

    实验代码如下:

    public class HbaseConectionTest {
    
        public static void main(String[] args) throws Exception{
    
            Configuration conf = HBaseConfiguration.create();
    
            conf.set("hbase.zookeeper.quorum", "XX.XXX.X.XX");
            conf.set("hbase.zookeeper.property.clientPort", "2181");
    
            ThreadInfo info = new ThreadInfo();
            info.setTableNamePrefix("test");
            info.setColNames("col1,col2");
            info.setTableCount(1);
            info.setConnStrategy("CREATEWITHCONF");//CREATEWITHCONF,CREATEWITHCONN
            info.setWriteStrategy("SEPERATE");//OVERLAP,SEPERATE
            info.setLifeCycle(60000L);
    
            int threadCount = 100;
    
            for(int i=0;i<threadCount;i++){
                //createTable(tableNamePrefix+i,colNames,conf);
            }
    
            //
            for(int i=0;i<threadCount;i++){
                new Thread(new WriteThread(conf,info,i)).start();
            }
    
            //HBaseAdmin admin = new HBaseAdmin(conf);
    
            //System.out.println(admin.tableExists("test"));
    
        }
    
        public static void createTable(String tableName,String[] colNames,Configuration conf) {
            System.out.println("start create table "+tableName);
            try {
    
                HBaseAdmin hBaseAdmin = new HBaseAdmin(conf);
                if (hBaseAdmin.tableExists(tableName)) {
                    System.out.println(tableName + " is exist");
                    //hBaseAdmin.disableTable(tableName);
                    //hBaseAdmin.deleteTable(tableName);
                    return;
                }
                HTableDescriptor tableDescriptor = new HTableDescriptor(tableName);
                for(int i=0;i<colNames.length;i++) {
                    tableDescriptor.addFamily(new HColumnDescriptor(colNames[i]));
                }
                hBaseAdmin.createTable(tableDescriptor);
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            System.out.println("end create table "+tableName);
        }
    
    }
    
    //Thread执行操作的配置信息
    class ThreadInfo {
    
        private int tableCount;
    
        String tableNamePrefix;
        String[] colNames;
    
        //CREATEBYCONF or CREATEBYCONN
        String connStrategy;
    
        //overlap or seperate
        String writeStrategy;
    
        long lifeCycle;
    
        public ThreadInfo(){
    
        }
    
        public int getTableCount() {
            return tableCount;
        }
    
        public void setTableCount(int tableCount) {
            this.tableCount = tableCount;
        }
    
        public String getTableNamePrefix() {
            return tableNamePrefix;
        }
    
        public void setTableNamePrefix(String tableNamePrefix) {
            this.tableNamePrefix = tableNamePrefix;
        }
    
        public String[] getColNames() {
            return colNames;
        }
    
        public void setColNames(String[] colNames) {
            this.colNames = colNames;
        }
    
        public void setColNames(String colNames) {
            if(colNames == null){
                this.colNames = null;
            }
            else{
                this.colNames = colNames.split(",");
            }
        }
    
        public String getWriteStrategy() {
            return writeStrategy;
        }
    
        public void setWriteStrategy(String writeStrategy) {
            this.writeStrategy = writeStrategy;
        }
    
        public String getConnStrategy() {
            return connStrategy;
        }
    
        public void setConnStrategy(String connStrategy) {
            this.connStrategy = connStrategy;
        }
    
        public long getLifeCycle() {
            return lifeCycle;
        }
    
        public void setLifeCycle(long lifeCycle) {
            this.lifeCycle = lifeCycle;
        }
    
    }
    
    class WriteThread implements Runnable{
    
        private Configuration conf;
        private ThreadInfo info;
        private int index;
    
        public WriteThread(Configuration conf,ThreadInfo info,int index){
            this.conf = conf;
            this.info = info;
            this.index = index;
        }
    
        @Override
        public void run(){
    
            String threadName = Thread.currentThread().getName();
            int operationCount = 0;
    
            HTable[] htables = null;
            HConnection conn = null;
    
            int tableCount = info.getTableCount();
    
            String tableNamePrefix = info.getTableNamePrefix();
            String[] colNames = info.getColNames();
    
            String connStrategy = info.getConnStrategy();
            String writeStrategy = info.getWriteStrategy();
    
            long lifeCycle = info.getLifeCycle();
    
            System.out.println(threadName+": started with index "+index);
    
            try{
                if (connStrategy.equals("CREATEWITHCONN")) {
    
                    conn = HConnectionManager.createConnection(conf);
    
                    if (writeStrategy.equals("SEPERATE")) {
                        htables = new HTable[1];
                        htables[0] = new HTable(TableName.valueOf(tableNamePrefix+(index%tableCount)), conn);
                    }
                    else if(writeStrategy.equals("OVERLAP")) {
                        htables = new HTable[tableCount];
                        for (int i = 0; i < tableCount; i++) {
                            htables[i] = new HTable(TableName.valueOf(tableNamePrefix+i), conn);
                        }
                    }
                    else{
                        return;
                    }
                }
                else if (connStrategy.equals("CREATEWITHCONF")) {
    
                    conn = null;
    
                    if (writeStrategy.equals("SEPERATE")) {
                        htables = new HTable[1];
                        htables[0] = new HTable(conf,TableName.valueOf(tableNamePrefix+(index%tableCount)));
                    }
                    else if(writeStrategy.equals("OVERLAP")) {
                        htables = new HTable[tableCount];
                        for (int i = 0; i < tableCount; i++) {
                            htables[i] = new HTable(conf,TableName.valueOf(tableNamePrefix+i));
                        }
                    }
                    else{
                        return;
                    }
                }
                else {
                    return;
                }
    
                long start = System.currentTimeMillis();
                long end = System.currentTimeMillis();
    
                Map<HTable,HColumnDescriptor[]> table_columnFamilies = new HashMap<HTable,HColumnDescriptor[]>();
                for(int i=0;i<htables.length;i++){
                    table_columnFamilies.put(htables[i],htables[i].getTableDescriptor().getColumnFamilies());
                }
    
                while(end-start<=lifeCycle){
                    HTable table = htables.length==1?htables[0]:htables[(int)Math.random()*htables.length];
                    long s1 = System.currentTimeMillis();
                    double r = Math.random();
                    HColumnDescriptor[] columnFamilies = table_columnFamilies.get(table);
                    Put put = generatePut(threadName,columnFamilies,colNames,operationCount);
                    table.put(put);
                    if(r>0.999){
                        System.out.println(System.currentTimeMillis()-s1);
                    }
                    operationCount++;
                    end = System.currentTimeMillis();
                }
    
                if(conn != null){
                    conn.close();
                }
    
            }catch(Exception ex){
                ex.printStackTrace();
            }
    
            System.out.println(threadName+": ended with operation count:"+operationCount);
        }
    
        private Put generatePut(String threadName,HColumnDescriptor[] columnFamilies,String[] colNames,int operationCount){
            Put put = new Put(Bytes.toBytes(threadName+"_"+operationCount));
            for (int i = 0; i < columnFamilies.length; i++) {
                String familyName = columnFamilies[i].getNameAsString();
                //System.out.println("familyName:"+familyName);
                for(int j=0;j<colNames.length;j++){
                    if(familyName.equals(colNames[j])) { //
                        String columnName = familyName+(int)(Math.floor(Math.random()*5+10*j));
                        String val = ""+columnName.hashCode()%100;
                        put.add(Bytes.toBytes(familyName),Bytes.toBytes(columnName),Bytes.toBytes(val));
                    }
                }
            }
            //System.out.println(put.toString());
            return put;
        }
    }

    简单来说就是先创建一些有两列的HBase表,然后创建一些线程分别采用getConnection策略和createConnection策略来写1分钟的数据。当然写几张表,写多久,写什么,怎么写都可以调整。比如我这里就设计了固定写一张表或者随机写一张表几种逻辑。需要注意一下红色部分的代码,这里预先获得了要写的HBase表的列信息。做这个动作的原因是getTableDescriptor是会产生网络开销的,建议写代码时尽量少调用,以免增加不必要的额外开销(事实上这个额外开销是很巨大的)。

    具体实验数据如下表所示,具体值因为网络波动等原因会有所差异。总的来说,在并发较高(线程数大于30)的时候,getConnection方法速度要明显快于createConnection;在并发较低的(线程数小于等于10)的时候,createConnection则稍微占优。另外,使用getConnection的时候,写一张表的速度在高并发场景下要明显快于写多张表,但是在低并发情况下此现象不明显;使用createConnection的时候,无论并发高低,写一张表的速度与写多张表大致相同,甚至还偏慢。

    上述现象与代码分析的结果并不完全一致。不一致的地方主要包括如下两点:

    (1)为什么线程少的时候,createConnection占优?理论上应该持平才是。这一点无法得到很合理的解释,存疑;

    (2)为什么线程很多的时候,createConnection会慢这么多?这里猜测服务端的ZK要维护大量连接会负载过大,即便是多个regionServer在负责具体的写操作,也仍旧会导致性能下降。

    这两个疑点还有待进一步论证。尽管如此,还是可以先建议大家在使用Java API与HBase交互时,尤其是处理高并发场景的时候,尽量使用getConnection的办法去创建HTable对象,避免维护不必要的connection导致浪费资源。

    thread_count table_count conn_strategy write_strategy interval result
    1 1 CONF OVERLAP 60s 10000*1=10000
    5 1 CONF OVERLAP 60s 11000*5=55000
    10 1 CONF OVERLAP 60s 12000*10=120000
    30 1 CONF OVERLAP 60s 8300*30=249000
    60 1 CONF OVERLAP 60s 6000*60=360000
    100 1 CONF OVERLAP 60s 4700*100=470000
    1 1 CONN OVERLAP 60s 12000*1=12000
    5 1 CONN OVERLAP 60s 16000*5=80000
    10 1 CONN OVERLAP 60s 10000*10=100000
    30 1 CONN OVERLAP 60s 2500*30=75000
    60 1 CONN OVERLAP 60s 1200*60=72000
    100 1 CONN OVERLAP 60s 1000*100=100000
    5 5 CONF SEPERATE 60s 10600*5=53000
    10 10 CONF SEPERATE 60s 11900*10=119000
    30 30 CONF SEPERATE 60s 6900*30=207000
    60 60 CONF SEPERATE 60s 3650*60=219000
    100 100 CONF SEPERATE 60s 2500*100=250000
    5 5 CONN SEPERATE 60s 14000*5=70000
    10 10 CONN SEPERATE 60s 10500*10=105000
    30 30 CONN SEPERATE 60s 3250*30=97500
    60 60 CONN SEPERATE 60s 1450*60=87000
    100 100 CONN SEPERATE 60s 930*100=93000
  • 相关阅读:
    angular.isDefined()
    angular.isDate()
    angular.isArray()
    .NET中栈和堆的比较
    SQL Server 2012配置Always On可用性组
    一分钟了解负载均衡的一切
    C# 线程并发锁
    获取Http请求参数
    什么是WCF
    Bitmap算法应用
  • 原文地址:https://www.cnblogs.com/xczyd/p/5577124.html
Copyright © 2011-2022 走看看