转载请标注原链接:http://www.cnblogs.com/xczyd/p/5577124.html
客户在使用HBase的时候,经常会抱怨说写入太慢,并发上不去等等。从前我遇到这种情况,一般都二话不说,直接去看HBase集群的负载,看看有什么性能瓶颈等等。
某老司机说,且慢,先看看用户怎么写的客户端访问HBase集群的代码。
于是花了一些时间去看。
不看不知道,一看就吓尿。客户(也包括我们自己的实施)写出来的客户端,很多时候存在很多低级错误,比如:
(1)滥用sychronize;
(2)创建了连接不释放;
(3)明明只需要调用一次的API,却进行了多次调用,要是碰巧遇到比较花时间的API,那性能就可想而知了;
(4)其他各种幺蛾子...
为此,本篇仅从HBase的Java API入手,通过源码分析和简单的实验,找到最合适Java API调用方法(主要服务于高并发场景)。
如果对HBase的Java API不熟悉的话,可以先去官网看一下文档。
下面开始正文:
使用Java API与HBase集群交互时,需要先创建一个HTable的实例,再使用该实例提供的方法来进行插入/删除/查询等操作。
要创建HTable对象,要先创建一个包含了HBase集群信息的配置实例Configuration conf,其一般创建方法如下:
Configuration conf = HBaseConfiguration.create(); //设置HBase集群的IP和端口 conf.set("hbase.zookeeper.quorum", "XX.XXX.X.XX"); conf.set("hbase.zookeeper.property.clientPort", "2181");
在拥有了conf之后,可以通过HTable提供的如下两种构造方法来创建HTable实例:
方法一:直接利用conf来创建HTable实例
对应的构造函数如下:
public HTable(Configuration conf, final TableName tableName) throws IOException { this.tableName = tableName; this.cleanupPoolOnClose = this.cleanupConnectionOnClose = true; if (conf == null) { this.connection = null; return; } this.connection = HConnectionManager.getConnection(conf); this.configuration = conf; this.pool = getDefaultExecutor(conf); this.finishSetup(); }
注意红色部分的代码。在这种构造方法中,会调用HConnectionManager的getConnection函数,这个函数以conf作为输入参数,来获取了一个HConnection的实例connection。熟悉odbc,jdbc的话,会知道使用Java API进行数据库操作的时候,都会创建一个类似的connection/connection pool来维护一些数据库与客户端之间相互的连接。对于Hbase来说,承担类似角色的就是HConnection。不过与oracle不同的一点是,HConnection实际上去连接的并不是HBase集群本身,而是维护其关键数据信息的Zookeeper(简称ZK)集群。有关ZK的内容在这里不做展开,不熟悉的话可以单纯地理解为一个独立的元信息管理角色。回过来看getConnection函数,其具体实现如下:
public static HConnection getConnection(final Configuration conf) throws IOException { HConnectionKey connectionKey = new HConnectionKey(conf); synchronized (CONNECTION_INSTANCES) { HConnectionImplementation connection = CONNECTION_INSTANCES.get(connectionKey); if (connection == null) { connection = (HConnectionImplementation)createConnection(conf, true); CONNECTION_INSTANCES.put(connectionKey, connection); } else if (connection.isClosed()) { HConnectionManager.deleteConnection(connectionKey, true); connection = (HConnectionImplementation)createConnection(conf, true); CONNECTION_INSTANCES.put(connectionKey, connection); } connection.incCount(); return connection; } }
其中,CONNECTION_INSTANCES的类型是LinkedHashMap<HConnectionKey,HConnectionImplementation>。所谓HConnectionImplementation其实就是HConnection的具体实现。继续注意红色部分的三行代码。第一行,通过conf创建了一个HConnectionKey的实例connectionKey;第二行,去CONNECTION_INSTANCES中查找是否存在与connectionKey对应的一个HConnection的实例;第三行,如果不存在,那么调用createConnection来创建一个HConnection的实例,否则直接返回刚才从Map中查找得到的HConnection对象
不嫌麻烦,再看一下HConnectionKey的构造函数和重写的hashCode函数,代码分别如下:
HConnectionKey(Configuration conf) { Map<String, String> m = new HashMap<String, String>(); if (conf != null) { for (String property : CONNECTION_PROPERTIES) { String value = conf.get(property); if (value != null) { m.put(property, value); } } } this.properties = Collections.unmodifiableMap(m); try { UserProvider provider = UserProvider.instantiate(conf); User currentUser = provider.getCurrent(); if (currentUser != null) { username = currentUser.getName(); } } catch (IOException ioe) { HConnectionManager.LOG.warn("Error obtaining current user, skipping username in HConnectionKey", ioe); }
}
public int hashCode() { final int prime = 31; int result = 1; if (username != null) { result = username.hashCode(); } for (String property : CONNECTION_PROPERTIES) { String value = properties.get(property); if (value != null) { result = prime * result + value.hashCode(); } } return result; }
可以看到,hashCode函数被重写以后,其返回值实际上是username的hashCode函数的返回值,而username来自于currentuser,currentuser又来自于provider,provider是由conf创建的。可以看出,只要有相同的conf,就能创建出相同的username,也就能保证HConnectionKey的hashCode函数被重写以后,能够在username相同时返回相同的值。而CONNECTION_INSTANCES是一个LinkedHashMap,其get函数会调用HConnectionKey的hashCode函数来判断该对象是否已经存在。因此,getConnection函数的本质就是根据conf信息返回connection对象,对每一个内容相同的conf,只会返回一个connection
方法二:调用createConnection方法来显式地创建Hconnection的实例,再将其作为输入参数来创建HTable实例
createConnection方法和Htable对应的构造函数分别如下:
public static HConnection createConnection(Configuration conf) throws IOException { UserProvider provider = UserProvider.instantiate(conf); return createConnection(conf, false, null, provider.getCurrent()); } static HConnection createConnection(final Configuration conf, final boolean managed,final ExecutorService pool, final User user)
throws IOException { String className = conf.get("hbase.client.connection.impl",HConnectionManager.HConnectionImplementation.class.getName()); Class<?> clazz = null; try { clazz = Class.forName(className); } catch (ClassNotFoundException e) { throw new IOException(e); } try { // Default HCM#HCI is not accessible; make it so before invoking. Constructor<?> constructor = clazz.getDeclaredConstructor(Configuration.class, boolean.class, ExecutorService.class, User.class); constructor.setAccessible(true); return (HConnection) constructor.newInstance(conf, managed, pool, user); } catch (Exception e) { throw new IOException(e); } }
public HTable(TableName tableName, HConnection connection) throws IOException { this.tableName = tableName; this.cleanupPoolOnClose = true; this.cleanupConnectionOnClose = false; this.connection = connection; this.configuration = connection.getConfiguration(); this.pool = getDefaultExecutor(this.configuration); this.finishSetup(); }
可以看出,这种构造HTable的方法会通过反射来创建一个新的HConnection实例,而不像方法一中那样共享一个HConnection实例。
值得一提的是,通过此种方法创建出来的HConnection,是需要在不再使用的时候显式调用close方法去释放掉的,否则容易造成端口占用等问题。
那么,上述两种方法,在执行插入/删除/查找的时候,性能如何呢?不妨先从代码角度分析一下。为了简便,先分析HTable在执行put(插入)操作时具体做的事情。
HTable的put函数如下:
public void put(final Put put) throws InterruptedIOException, RetriesExhaustedWithDetailsException { doPut(put); if (autoFlush) { flushCommits(); } } private void doPut(Put put) throws InterruptedIOException, RetriesExhaustedWithDetailsException { if (ap.hasError()){ writeAsyncBuffer.add(put); backgroundFlushCommits(true); } validatePut(put); currentWriteBufferSize += put.heapSize(); writeAsyncBuffer.add(put); while (currentWriteBufferSize > writeBufferSize) { backgroundFlushCommits(false); } } private void backgroundFlushCommits(boolean synchronous) throws InterruptedIOException, RetriesExhaustedWithDetailsException { try { do { ap.submit(writeAsyncBuffer, true); } while (synchronous && !writeAsyncBuffer.isEmpty()); if (synchronous) { ap.waitUntilDone(); } if (ap.hasError()) { LOG.debug(tableName + ": One or more of the operations have failed -" + " waiting for all operation in progress to finish (successfully or not)"); while (!writeAsyncBuffer.isEmpty()) { ap.submit(writeAsyncBuffer, true); } ap.waitUntilDone(); if (!clearBufferOnFail) { // if clearBufferOnFailed is not set, we're supposed to keep the failed operation in the // write buffer. This is a questionable feature kept here for backward compatibility writeAsyncBuffer.addAll(ap.getFailedOperations()); } RetriesExhaustedWithDetailsException e = ap.getErrors(); ap.clearErrors(); throw e; } } finally { currentWriteBufferSize = 0; for (Row mut : writeAsyncBuffer) { if (mut instanceof Mutation) { currentWriteBufferSize += ((Mutation) mut).heapSize(); } } } }
如红色部分所表示,调用顺序是put->doPut->backgroundFlushCommits->ap.submit,其中ap是类AsyncProcess的对象。因此追踪到AsyncProcess类,其代码如下:
public void submit(List<? extends Row> rows, boolean atLeastOne) throws InterruptedIOException { submitLowPriority(rows, atLeastOne, false); } public void submitLowPriority(List<? extends Row> rows, boolean atLeastOne, boolean isLowPripority) throws InterruptedIOException { if (rows.isEmpty()) { return; } // This looks like we are keying by region but HRegionLocation has a comparator that compares // on the server portion only (hostname + port) so this Map collects regions by server. Map<HRegionLocation, MultiAction<Row>> actionsByServer = new HashMap<HRegionLocation, MultiAction<Row>>(); List<Action<Row>> retainedActions = new ArrayList<Action<Row>>(rows.size()); long currentTaskCnt = tasksDone.get(); boolean alreadyLooped = false; NonceGenerator ng = this.hConnection.getNonceGenerator(); do { if (alreadyLooped){ // if, for whatever reason, we looped, we want to be sure that something has changed. waitForNextTaskDone(currentTaskCnt); currentTaskCnt = tasksDone.get(); } else { alreadyLooped = true; } // Wait until there is at least one slot for a new task. waitForMaximumCurrentTasks(maxTotalConcurrentTasks - 1); // Remember the previous decisions about regions or region servers we put in the // final multi. Map<Long, Boolean> regionIncluded = new HashMap<Long, Boolean>(); Map<ServerName, Boolean> serverIncluded = new HashMap<ServerName, Boolean>(); int posInList = -1; Iterator<? extends Row> it = rows.iterator(); while (it.hasNext()) { Row r = it.next(); HRegionLocation loc = findDestLocation(r, posInList); if (loc == null) { // loc is null if there is an error such as meta not available. it.remove(); } else if (canTakeOperation(loc, regionIncluded, serverIncluded)) { Action<Row> action = new Action<Row>(r, ++posInList); setNonce(ng, r, action); retainedActions.add(action); addAction(loc, action, actionsByServer, ng); it.remove(); } } } while (retainedActions.isEmpty() && atLeastOne && !hasError()); HConnectionManager.ServerErrorTracker errorsByServer = createServerErrorTracker(); sendMultiAction(retainedActions, actionsByServer, 1, errorsByServer, isLowPripority); } private HRegionLocation findDestLocation(Row row, int posInList) { if (row == null) throw new IllegalArgumentException("#" + id + ", row cannot be null"); HRegionLocation loc = null; IOException locationException = null; try { loc = hConnection.locateRegion(this.tableName, row.getRow()); if (loc == null) { locationException = new IOException("#" + id + ", no location found, aborting submit for" + " tableName=" + tableName + " rowkey=" + Arrays.toString(row.getRow())); } } catch (IOException e) { locationException = e; } if (locationException != null) { // There are multiple retries in locateRegion already. No need to add new. // We can't continue with this row, hence it's the last retry. manageError(posInList, row, false, locationException, null); return null; } return loc; }
这里代码的主要实现机制是异步调用,也就是说,并非每一次put操作都是直接往HBase里面写数据的,而是等到缓存区域内的数据多到一定程度(默认设置是2M),再进行一次写操作。当然这次操作在Server端应当还是要排队执行的,具体执行机制这里不作展开。可以确定的是,HConnection在插入/查询/删除的Java API中,只是起到一个定位RegionServer的作用,在定位到RegionServer之后,操作都是由client端通过rpc调用完成的,与客户端创建的connection的数目无关。另外,locateRegion其实只有在没有命中缓存的时候才会进行rpc通信,其他时候都是直接从缓存中获取RegionServer信息,详情可以查看locateRegion的源码,这里也不再展开。
代码分析告一段落,通过分析可以确定,createConnection的方法创建出大量的HConnection并不会对写入性能有任何帮助。相反,由于白白浪费了资源,还会比getConnection更慢。但是慢多少,无法仅凭代码作出判断。
不妨简单做一个实验来验证上述论断:
服务器环境:四台linux服务器组成的HBase集群, 内存64G,ping一次平均约5ms(严谨一点的话应该再提供一下cpu核数、频率,以及磁盘转速等信息)
客户端环境:在Mac上装的ubuntu虚拟机,分配内存10G,CPU、网络和磁盘读写速度都要比物理机慢不少,但是不影响结论
实验代码如下:
public class HbaseConectionTest { public static void main(String[] args) throws Exception{ Configuration conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum", "XX.XXX.X.XX"); conf.set("hbase.zookeeper.property.clientPort", "2181"); ThreadInfo info = new ThreadInfo(); info.setTableNamePrefix("test"); info.setColNames("col1,col2"); info.setTableCount(1); info.setConnStrategy("CREATEWITHCONF");//CREATEWITHCONF,CREATEWITHCONN info.setWriteStrategy("SEPERATE");//OVERLAP,SEPERATE info.setLifeCycle(60000L); int threadCount = 100; for(int i=0;i<threadCount;i++){ //createTable(tableNamePrefix+i,colNames,conf); } // for(int i=0;i<threadCount;i++){ new Thread(new WriteThread(conf,info,i)).start(); } //HBaseAdmin admin = new HBaseAdmin(conf); //System.out.println(admin.tableExists("test")); } public static void createTable(String tableName,String[] colNames,Configuration conf) { System.out.println("start create table "+tableName); try { HBaseAdmin hBaseAdmin = new HBaseAdmin(conf); if (hBaseAdmin.tableExists(tableName)) { System.out.println(tableName + " is exist"); //hBaseAdmin.disableTable(tableName); //hBaseAdmin.deleteTable(tableName); return; } HTableDescriptor tableDescriptor = new HTableDescriptor(tableName); for(int i=0;i<colNames.length;i++) { tableDescriptor.addFamily(new HColumnDescriptor(colNames[i])); } hBaseAdmin.createTable(tableDescriptor); } catch (Exception ex) { ex.printStackTrace(); } System.out.println("end create table "+tableName); } } //Thread执行操作的配置信息 class ThreadInfo { private int tableCount; String tableNamePrefix; String[] colNames; //CREATEBYCONF or CREATEBYCONN String connStrategy; //overlap or seperate String writeStrategy; long lifeCycle; public ThreadInfo(){ } public int getTableCount() { return tableCount; } public void setTableCount(int tableCount) { this.tableCount = tableCount; } public String getTableNamePrefix() { return tableNamePrefix; } public void setTableNamePrefix(String tableNamePrefix) { this.tableNamePrefix = tableNamePrefix; } public String[] getColNames() { return colNames; } public void setColNames(String[] colNames) { this.colNames = colNames; } public void setColNames(String colNames) { if(colNames == null){ this.colNames = null; } else{ this.colNames = colNames.split(","); } } public String getWriteStrategy() { return writeStrategy; } public void setWriteStrategy(String writeStrategy) { this.writeStrategy = writeStrategy; } public String getConnStrategy() { return connStrategy; } public void setConnStrategy(String connStrategy) { this.connStrategy = connStrategy; } public long getLifeCycle() { return lifeCycle; } public void setLifeCycle(long lifeCycle) { this.lifeCycle = lifeCycle; } } class WriteThread implements Runnable{ private Configuration conf; private ThreadInfo info; private int index; public WriteThread(Configuration conf,ThreadInfo info,int index){ this.conf = conf; this.info = info; this.index = index; } @Override public void run(){ String threadName = Thread.currentThread().getName(); int operationCount = 0; HTable[] htables = null; HConnection conn = null; int tableCount = info.getTableCount(); String tableNamePrefix = info.getTableNamePrefix(); String[] colNames = info.getColNames(); String connStrategy = info.getConnStrategy(); String writeStrategy = info.getWriteStrategy(); long lifeCycle = info.getLifeCycle(); System.out.println(threadName+": started with index "+index); try{ if (connStrategy.equals("CREATEWITHCONN")) { conn = HConnectionManager.createConnection(conf); if (writeStrategy.equals("SEPERATE")) { htables = new HTable[1]; htables[0] = new HTable(TableName.valueOf(tableNamePrefix+(index%tableCount)), conn); } else if(writeStrategy.equals("OVERLAP")) { htables = new HTable[tableCount]; for (int i = 0; i < tableCount; i++) { htables[i] = new HTable(TableName.valueOf(tableNamePrefix+i), conn); } } else{ return; } } else if (connStrategy.equals("CREATEWITHCONF")) { conn = null; if (writeStrategy.equals("SEPERATE")) { htables = new HTable[1]; htables[0] = new HTable(conf,TableName.valueOf(tableNamePrefix+(index%tableCount))); } else if(writeStrategy.equals("OVERLAP")) { htables = new HTable[tableCount]; for (int i = 0; i < tableCount; i++) { htables[i] = new HTable(conf,TableName.valueOf(tableNamePrefix+i)); } } else{ return; } } else { return; } long start = System.currentTimeMillis(); long end = System.currentTimeMillis(); Map<HTable,HColumnDescriptor[]> table_columnFamilies = new HashMap<HTable,HColumnDescriptor[]>(); for(int i=0;i<htables.length;i++){ table_columnFamilies.put(htables[i],htables[i].getTableDescriptor().getColumnFamilies()); } while(end-start<=lifeCycle){ HTable table = htables.length==1?htables[0]:htables[(int)Math.random()*htables.length]; long s1 = System.currentTimeMillis(); double r = Math.random(); HColumnDescriptor[] columnFamilies = table_columnFamilies.get(table); Put put = generatePut(threadName,columnFamilies,colNames,operationCount); table.put(put); if(r>0.999){ System.out.println(System.currentTimeMillis()-s1); } operationCount++; end = System.currentTimeMillis(); } if(conn != null){ conn.close(); } }catch(Exception ex){ ex.printStackTrace(); } System.out.println(threadName+": ended with operation count:"+operationCount); } private Put generatePut(String threadName,HColumnDescriptor[] columnFamilies,String[] colNames,int operationCount){ Put put = new Put(Bytes.toBytes(threadName+"_"+operationCount)); for (int i = 0; i < columnFamilies.length; i++) { String familyName = columnFamilies[i].getNameAsString(); //System.out.println("familyName:"+familyName); for(int j=0;j<colNames.length;j++){ if(familyName.equals(colNames[j])) { // String columnName = familyName+(int)(Math.floor(Math.random()*5+10*j)); String val = ""+columnName.hashCode()%100; put.add(Bytes.toBytes(familyName),Bytes.toBytes(columnName),Bytes.toBytes(val)); } } } //System.out.println(put.toString()); return put; } }
简单来说就是先创建一些有两列的HBase表,然后创建一些线程分别采用getConnection策略和createConnection策略来写1分钟的数据。当然写几张表,写多久,写什么,怎么写都可以调整。比如我这里就设计了固定写一张表或者随机写一张表几种逻辑。需要注意一下红色部分的代码,这里预先获得了要写的HBase表的列信息。做这个动作的原因是getTableDescriptor是会产生网络开销的,建议写代码时尽量少调用,以免增加不必要的额外开销(事实上这个额外开销是很巨大的)。
具体实验数据如下表所示,具体值因为网络波动等原因会有所差异。总的来说,在并发较高(线程数大于30)的时候,getConnection方法速度要明显快于createConnection;在并发较低的(线程数小于等于10)的时候,createConnection则稍微占优。另外,使用getConnection的时候,写一张表的速度在高并发场景下要明显快于写多张表,但是在低并发情况下此现象不明显;使用createConnection的时候,无论并发高低,写一张表的速度与写多张表大致相同,甚至还偏慢。
上述现象与代码分析的结果并不完全一致。不一致的地方主要包括如下两点:
(1)为什么线程少的时候,createConnection占优?理论上应该持平才是。这一点无法得到很合理的解释,存疑;
(2)为什么线程很多的时候,createConnection会慢这么多?这里猜测服务端的ZK要维护大量连接会负载过大,即便是多个regionServer在负责具体的写操作,也仍旧会导致性能下降。
这两个疑点还有待进一步论证。尽管如此,还是可以先建议大家在使用Java API与HBase交互时,尤其是处理高并发场景的时候,尽量使用getConnection的办法去创建HTable对象,避免维护不必要的connection导致浪费资源。
thread_count | table_count | conn_strategy | write_strategy | interval | result |
1 | 1 | CONF | OVERLAP | 60s | 10000*1=10000 |
5 | 1 | CONF | OVERLAP | 60s | 11000*5=55000 |
10 | 1 | CONF | OVERLAP | 60s | 12000*10=120000 |
30 | 1 | CONF | OVERLAP | 60s | 8300*30=249000 |
60 | 1 | CONF | OVERLAP | 60s | 6000*60=360000 |
100 | 1 | CONF | OVERLAP | 60s | 4700*100=470000 |
1 | 1 | CONN | OVERLAP | 60s | 12000*1=12000 |
5 | 1 | CONN | OVERLAP | 60s | 16000*5=80000 |
10 | 1 | CONN | OVERLAP | 60s | 10000*10=100000 |
30 | 1 | CONN | OVERLAP | 60s | 2500*30=75000 |
60 | 1 | CONN | OVERLAP | 60s | 1200*60=72000 |
100 | 1 | CONN | OVERLAP | 60s | 1000*100=100000 |
5 | 5 | CONF | SEPERATE | 60s | 10600*5=53000 |
10 | 10 | CONF | SEPERATE | 60s | 11900*10=119000 |
30 | 30 | CONF | SEPERATE | 60s | 6900*30=207000 |
60 | 60 | CONF | SEPERATE | 60s | 3650*60=219000 |
100 | 100 | CONF | SEPERATE | 60s | 2500*100=250000 |
5 | 5 | CONN | SEPERATE | 60s | 14000*5=70000 |
10 | 10 | CONN | SEPERATE | 60s | 10500*10=105000 |
30 | 30 | CONN | SEPERATE | 60s | 3250*30=97500 |
60 | 60 | CONN | SEPERATE | 60s | 1450*60=87000 |
100 | 100 | CONN | SEPERATE | 60s | 930*100=93000 |