zoukankan      html  css  js  c++  java
  • 红黑树总结

    红黑树总结

    红黑树用来解决什么问题?

    在树型的查找中,我们知道二叉查找树的查找效率很不错,但是此树右个缺陷,就是对基本有序的树查找起来变成了二分查找法.效率低下.后来出现了平衡二叉树,解决了这个问题,但平衡二叉树无论是实现,还是其为了维护左右子树高度差问题的维护实现进而导致效率低下,进而产生了红黑树.

    那些红黑树是不可能的?

    输入图片说明

    如上图,我们分析下这两个图:

    1. 图1是一个不可能的红黑树,因为最低下的节点3和6的颜色是黑色,这种节点是不可能这样添加上去的,还有每条路径不平衡,2的左子树虽然是个空节点,但是红黑树的叶子节点,因此其黑色高度为1,但是右边的红黑树高度明显大于1,因此我们有这样的结论:

      • 当该节点没有孩子节点
        • 该节点为红色,其父节点为黑色,兄弟节点为红色
        • 该节点为黑色,此种节点一般是经过变换得来的,新插入的节点不可能是红色的.
      • 当该节点只有左孩子或者右孩子之一,若该节点是黑色,其唯一孩子必然为红色,且孩子节点的左右子树必然为空节点.(这是由性质5决定的,为了左右子树的平衡,必须这样)
    2. 图2是一个新插入节点3的典型的代表图,插入节点三以后,违反了性质4,则将节点2,5变为黑色,将4变为红色,然后再将4变为黑色即可.借此,我们分析一下插入节点的修复情况:(p:parent,g:grandfather,u:uncle)
    
    	1. 当插入节点是根节点时,直接将颜色变为黑色即可.
    
    	2. 当`p.color==BLACK`,而插入的节点为红色,对整个树不影响,不做调整.
    
    	3. 当`p.color==RED`,则p原来必然没有孩子,因此新插入的节点node是唯一孩子.`p.color==RED`->`g.color==BLACK(性质4)`->`u.color==RED(性质5)`,则将p,u颜色设置为黑色,将g颜色设置为红色,此时,问题变为g对整个树的影响,不一样了,后面讨论g的变化分类.
    
    	4. g变为了红色对整个树的影响,测试将g设置为新的节点node,注意这和插入不一样,这个节点是原本就有的.(此时对应插入节点的情况1,2一样不讨论,我们讨论此时node节点的父亲p的颜色是红色的情况,`p.color==RED`->`bro.color==BLACK`->`g.color==BLACK`->u可能为红色也可能为黑色,注意,此时并没有违反性质5,影响的只是性质4,两个连续的红色节点.此时处理的关键我们发现是u节点,因此对u分情况讨论)
    
        	1. 当`u.color==RED`,继续循环调用.
    
        	2. 当`u.color==BLACK`,见我前面的红黑树一节的说明,我们此时需要对节点g进行左旋(`p==g.right`)或右旋(`p==g.left`),但是此时由个问题,我们旋转后不希望继续出现继续违反性质4(两个节点为红色),因此需要对节点node是左子树还是右子树分情况讨论.
    
            - 当`p==g.left`
    
              - 当`node==g.left`,我们直接右旋,发现问题解决,OK!
    
              - 当`node==g.right`,我们直接右旋,发现出现了节点g和bro同时为红色,且bro为g的左子树,违反性质4,这样的左旋肯定是有问题的.具体往下再不讨论,读者可以自己去想,我们得出的结论就是先将p节点左旋,然后再g节点右旋.然后我们会得到一个结论,此时的节点node变成了原来g节点的位置.为此,我们构造一颗树验证一下.
    
                ```java
                 @Test
                  public void testRBT() {
                    TreeMap<Integer, String> map = new TreeMap<>();
                    map.put(9, 9 + "");
                    map.put(3, 3 + "");
                    map.put(10, 10 + "");
                    map.put(1, 1 + "");
                    map.put(6, 6 + "");
                    map.put(4, 4 + "");
                    map.put(8, 8 + "");
                    assertThat(map.getFirstEntry().getKey(), is(9));
                    map.put(5, 5 + "");
                    assertThat(map.getFirstEntry().getKey(), is(6));
                  }
                ```
    
                我们的结论被验证.
    
            - 当`p==g.right`镜像问题,不再做讨论.
    
        	3. 综上: 我们分析一下整个插入过程,把能合并的合并.合并完之后就是我前一节红黑树所讨论的情况.在此,我们再综合一下.
    
            - 当插入节点是根节点,变为黑色(case 1)
    
            - 当`p.color==BLACK`,无需操作
    
            - 当`p.color==RED`时:
    
              - 当`u.color==RED`,递归解决(case 2)
              - 当`u.color==BLACK`,若node节点和其父节点都是左子树或者都是右子树,直接旋转,否则需要先行处理,再旋转.(case 3)
    
              我们给出这样的框架代码:
    
    void fixInsertiong(Node node){
                    Node p,u,g;
                    while(node!=root&&node.parent.color==RED){
                      p=node.parent;
                      g==node.parent;
                      if(p==g.left){
                        u=g.right;
                        //case 2
                        if(u.color==RED){
                          u.color=BLACK;
                          p.color=BLACK;
                          g.color=RED;
                          node =g;
                        }
                        //case 3
                        else{
                          if(node==p.right){
                            rotateLeft(p);
                            Node tmp=p;
                            p=node;
                            node=tmp;
                          }
                          p.color=BLACK;
                          g.color=RED;
                          rotateRight(g);
                        }
                      }else{
                        u=g.left;
                        //case 2
                        if(u.color==RED){
                          u.color=BLACK;
                          p.color=BLACK;
                          g.color=RED;
                          node =g;
                        }
                        //case 3
                        else{
                           if(node==p.left){
                            rotateRight(p);
                            Node tmp=p;
                            p=node;
                            node=tmp;
                          }
                          p.color=BLACK;
                          g.color=RED;
                          rotateLeft(g);
                        }
                        }
                      }
                    }
                    //case 1
                    root.color==BLACK;
                  }
    

    思路,由于新插入节点和及祖父节点变为红色时都需要调整,我们合并为一种情况,只考虑祖父节点变为红色,对整个树的影响,此时node.color==p.color==RED,bro.color==g.color==BLACK,故需要对u分颜色讨论,但是u的获取和p是左子树还是右子树有关,故先对p是左子树还是右子树分类,再对u.color分类,然后旋转,为了保证旋转后不会出现两个连续的红色,需要检查node节点和p是否都为左子树或者同为右子树.如果是直接旋转,如果不是,先逆向旋转,再旋转,这种情况得到的node一般变成了g的位置.

  • 相关阅读:
    POJ
    luogu- P1373 小a和uim之大逃离 DP 四维,其中一维记录差值
    牛客国庆集训派对Day3 B Tree(树形dp + 组合计数)
    【CF 1059C】 Sequence Transformation 数学
    POJ
    牛客国庆集训派对Day6 A Birthday 费用流
    Treap + 无旋转Treap 学习笔记
    牛客2018国庆集训派对Day3 I Metropolis 多源最短路径
    Gym
    CodeForces
  • 原文地址:https://www.cnblogs.com/xd03122049/p/7874590.html
Copyright © 2011-2022 走看看