zoukankan
html css js c++ java
快速排序的最优时间复杂度是 O(nlogn)
T(n)=2T(n/2)+n
设n=2^k
T(n/2)=2T(n/2^2)+n/2
T(n/2^2)=2T(n/2^3)+n/2^2
T(n)=2T(n/2)+n=2^2T(n/2^2)+2*n/2+n=2^3T(n/2^3)+2^2*n/2^2+2*n/2+n
=2^kT(1)+kn=nT(1)+kn=n(logn+T(1))=o(nlogn)
注:T(1)=0
快速排序的最优时间复杂度是 (O(nlogn)),最差时间复杂度是 $O(n^2)$,期望时间复杂度是 $O(nlogn)$。
这里我们证明一下快排的期望时间复杂度。
设$T(n)$为对长度为$n$的序列进行快速排序所需要的期望时间。我们有:
$$T(0) = 0$$
以及:
$$T(n) = n + frac{1}{n}sum_{i=0}^{n-1}(T(i) + T(n - i - 1))$$
我们可以通过放缩来获得对 $T(n)$上界的一个估计。
$$T(n) = n + frac{1}{n}sum_{i=0}^{n-1}(T(i) + T(n - i - 1))$$
$$= n + frac{2}{n}sum_{i=frac{2}{n}}^{n-1}(T(i) + T(n - i - 1))$$
$$= n + frac{2}{n}sum_{i=frac{2}{n}}^{frac{3n}{4}}(T(i) + T(n - i - 1)) + frac{2}{n}sum_{i=frac{3n}{4}}^{n-1}(T(i) + T(n - i - 1))$$
因为 $T(n) >= n$ , 所以对于 $frac{n}{2} <= i <= j$,我们显然有:
$$T(i) + T(n - i) <= T(j) + T(n - j)$$
所以:
$$T(n) <= n + frac{2}{n}sum_{i=frac{2}{n}}^{frac{3n}{4}}(T(frac{3n}{4}) + T(frac{n}{4})) + frac{2}{n}sum_{i=frac{3n}{4}}^{n-1}(T(n - 1) + T(0))$$
$$<= n + frac{1}{2}(T(frac{3n}{4}) + T(frac{n}{4})) + frac{1}{2}T(n-1)$$
我们要证明 $T(n) = O(nlogn)$, 这需要证明存在常数 $c$ 满足 $T(n) <= cnlogn$。
我们考虑用数学归纳法证明。$n = 0$时定理显然成立。现在假设对于 $m <= n$ 定理皆成立。那么:
$$T(n) <= n + frac{1}{2}(T(frac{3n}{4}) + T(frac{n}{4})) + frac{1}{2}T(n-1)$$
$$<= n +frac{1}{2}(c(frac{3n}{4})log(frac{3n}{4}) + c(frac{n}{4})log(frac{n}{4})) + frac{1}{2}c(n-1)log(n-1)$$
$$<= n +c(frac{3n}{8}log(n) - frac{3n}{8}log(frac{4}{3}) + frac{n}{8}log(n) - frac{n}{8}log(4) + frac{n}{2}log(n))$$
$$= cnlogn + n(1 - frac{3c}{8}log(frac{4}{3}) - frac{c}{4})$$
当 $1 - frac{3c}{8}log(frac{4}{3}) - frac{c}{4} <= 0$时,也即约$c >= frac{5}{2}$,我们有:
$$T(n) <= cnlogn$$.
归纳成立,$T(n) = O(nlogn)$
查看全文
相关阅读:
string的sizeof
计算程序运行时间
sleep所在头文件
Mysql复制表结构、表数据
UIView属性
UITextView
UITextField属性
UISwitch属性
UISlide属性
UISegment属性
原文地址:https://www.cnblogs.com/xfcao/p/12551686.html
最新文章
统计图像分割训练集中的类别分布
83. Spring Boot 1.4单元测试【从零开始学Spring Boot】
做事的常识,成功的公式
82. Spring Boot – 启动彩蛋【从零开始学Spring Boot】
别让猴子跳回背上
C# using 三种使用方式 C#中托管与非托管 C#托管资源和非托管资源区别
泛型
C#中treeview的问题,如何区分根节点和子节点以及根节点和根节点的兄弟节点?
抽象方法实现多态___森林里的动物在快乐的生活
读书日记
热门文章
迷你DVD管理器项目
XML
序列化和反序列化
设计模式原则总结--读《大话设计模式》有感
C# 程序性能提升篇-1、装箱和拆箱,枚举的ToString浅析
多表连接查询
再看单例模式
位域的sizeof(二)
进程地址空间(二)
进程概论
Copyright © 2011-2022 走看看