zoukankan
html css js c++ java
快速排序的最优时间复杂度是 O(nlogn)
T(n)=2T(n/2)+n
设n=2^k
T(n/2)=2T(n/2^2)+n/2
T(n/2^2)=2T(n/2^3)+n/2^2
T(n)=2T(n/2)+n=2^2T(n/2^2)+2*n/2+n=2^3T(n/2^3)+2^2*n/2^2+2*n/2+n
=2^kT(1)+kn=nT(1)+kn=n(logn+T(1))=o(nlogn)
注:T(1)=0
快速排序的最优时间复杂度是 (O(nlogn)),最差时间复杂度是 $O(n^2)$,期望时间复杂度是 $O(nlogn)$。
这里我们证明一下快排的期望时间复杂度。
设$T(n)$为对长度为$n$的序列进行快速排序所需要的期望时间。我们有:
$$T(0) = 0$$
以及:
$$T(n) = n + frac{1}{n}sum_{i=0}^{n-1}(T(i) + T(n - i - 1))$$
我们可以通过放缩来获得对 $T(n)$上界的一个估计。
$$T(n) = n + frac{1}{n}sum_{i=0}^{n-1}(T(i) + T(n - i - 1))$$
$$= n + frac{2}{n}sum_{i=frac{2}{n}}^{n-1}(T(i) + T(n - i - 1))$$
$$= n + frac{2}{n}sum_{i=frac{2}{n}}^{frac{3n}{4}}(T(i) + T(n - i - 1)) + frac{2}{n}sum_{i=frac{3n}{4}}^{n-1}(T(i) + T(n - i - 1))$$
因为 $T(n) >= n$ , 所以对于 $frac{n}{2} <= i <= j$,我们显然有:
$$T(i) + T(n - i) <= T(j) + T(n - j)$$
所以:
$$T(n) <= n + frac{2}{n}sum_{i=frac{2}{n}}^{frac{3n}{4}}(T(frac{3n}{4}) + T(frac{n}{4})) + frac{2}{n}sum_{i=frac{3n}{4}}^{n-1}(T(n - 1) + T(0))$$
$$<= n + frac{1}{2}(T(frac{3n}{4}) + T(frac{n}{4})) + frac{1}{2}T(n-1)$$
我们要证明 $T(n) = O(nlogn)$, 这需要证明存在常数 $c$ 满足 $T(n) <= cnlogn$。
我们考虑用数学归纳法证明。$n = 0$时定理显然成立。现在假设对于 $m <= n$ 定理皆成立。那么:
$$T(n) <= n + frac{1}{2}(T(frac{3n}{4}) + T(frac{n}{4})) + frac{1}{2}T(n-1)$$
$$<= n +frac{1}{2}(c(frac{3n}{4})log(frac{3n}{4}) + c(frac{n}{4})log(frac{n}{4})) + frac{1}{2}c(n-1)log(n-1)$$
$$<= n +c(frac{3n}{8}log(n) - frac{3n}{8}log(frac{4}{3}) + frac{n}{8}log(n) - frac{n}{8}log(4) + frac{n}{2}log(n))$$
$$= cnlogn + n(1 - frac{3c}{8}log(frac{4}{3}) - frac{c}{4})$$
当 $1 - frac{3c}{8}log(frac{4}{3}) - frac{c}{4} <= 0$时,也即约$c >= frac{5}{2}$,我们有:
$$T(n) <= cnlogn$$.
归纳成立,$T(n) = O(nlogn)$
查看全文
相关阅读:
xpath教程-逐层检索和全局检索 转
xpath教程-通过ID和Class检索 转
minianaconda3安装
爬取表情
进程线程(转)
centos 安装docker方法2
关于Dockerfile
根据指定规则生成游戏选项编码实战
分布式对象存储 读书笔记
muduo 的windows下的编译
原文地址:https://www.cnblogs.com/xfcao/p/12551686.html
最新文章
HDU 2136 Largest prime factor
HDU 1445 Ride to School
HDU 1338 Game Prediction
HDU 1005 Wooden Sticks
HDU 1009 FatMouse' Trade
HDU G-免费馅饼
HDU B-Ignatius and the Princess IV
PAT 1040 有几个PAT
PAT 1045 快速排序
PAT 1080 MOOC期终成绩
热门文章
c语言中会遇到的面试题
volatile关键字
关键字const
can基础知识介绍
堆和栈的区别
can通信实验
STM32 CAN控制器简介
navicate premium黄色版本破解下载
requests设置代理ip
python保存图片
Copyright © 2011-2022 走看看