zoukankan      html  css  js  c++  java
  • [AtCoder][ARC084]Snuke Festival 题解

    Snuke Festival

    时间限制: 1 Sec 内存限制: 128 MB

    题目描述

    The season for Snuke Festival has come again this year. First of all, Ringo will perform a ritual to summon Snuke. For the ritual, he needs an altar, which consists of three parts, one in each of the three categories: upper, middle and lower. 
    He has N parts for each of the three categories. The size of the i-th upper part is Ai, the size of the i-th middle part is Bi, and the size of the i-th lower part is Ci. 
    To build an altar, the size of the middle part must be strictly greater than that of the upper part, and the size of the lower part must be strictly greater than that of the middle part. On the other hand, any three parts that satisfy these conditions can be combined to form an altar. 
    How many different altars can Ringo build? Here, two altars are considered different when at least one of the three parts used is different.

    Constraints 
    1≤N≤105 
    1≤Ai≤109(1≤i≤N) 
    1≤Bi≤109(1≤i≤N) 
    1≤Ci≤109(1≤i≤N) 
    All input values are integers.

    输入

    Input is given from Standard Input in the following format: 

    A1 … AN 
    B1 … BN 
    C1 … CN

    输出

    Print the number of different altars that Ringo can build.

    样例输入


    1 5 
    2 4 
    3 6

    样例输出

    3

    提示

    The following three altars can be built: 
    Upper: 1-st part, Middle: 1-st part, Lower: 1-st part 
    Upper: 1-st part, Middle: 1-st part, Lower: 2-nd part 
    Upper: 1-st part, Middle: 2-nd part, Lower: 2-nd part

    题解

    简单的排序+二分查找,善用STL即可。

    第一次拿到个人训练赛第一好开心嘤嘤嘤

    代码

    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    int n, aa[3][100001];
    long long ans = 0;
    
    int main() {
        ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
        cin >> n;
        for (int i = 0; i < 3; i++) {
            for (int j = 0; j < n; j++) cin >> aa[i][j];
            sort(aa[i], aa[i] + n);
        }
    
        for (int i = 0; i < n; i++) {
            unsigned long j = lower_bound(aa[0], aa[0] + n, aa[1][i]) - aa[0];
            unsigned long k = upper_bound(aa[2], aa[2] + n, aa[1][i]) - aa[2];
            ans += (long long) (n - k) * j;
        }
        cout << ans;
        return 0;
    }
  • 相关阅读:
    SpringMVC中请求路径参数使用正则表达式
    SpringBoot单元测试示例2
    数据结构与算法之——八大排序算法
    linux学习之centos(二):虚拟网络三种连接方式和SecureCRT的使用
    linux学习之centos(一):在VMware虚拟机中安装centos6.5
    网易云课堂学习之VS相关
    emplace_back减少内存拷贝和移动
    Lepus经历收获杂谈(一)——confirm features的小工具
    MDM平台学习笔记
    四大开源协议:BSD、Apache、GPL、LGPL
  • 原文地址:https://www.cnblogs.com/xfl03/p/9413778.html
Copyright © 2011-2022 走看看