zoukankan      html  css  js  c++  java
  • Satisfiability

    1.1 SAT

    SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?
    可满足性要求的是结果为TRUE!

    1.1.1 3-SAT

    SAT: where each clause contains exactly 3 literals
    (and each literal corresponds to a different variable).

    先来看一个列子:

    当然一个正确的实例是非常好找到的!(那么有没有可能永远找不到解?)答案是肯定!原因见下文。

    科学界一直存在的一个问题就是3元可满足性问题有没有多项式时间算法解!

    1.1.2 3-satisfiability reduces to independent set

    Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of
    INDEPENDENT-SET that has an independent set of size k = ⎜Φ⎜ iff Φ is satisfiable.

    定理:3元可满足性问题可以规约到独立集问题。

    Construction.

    • G contains 3 nodes for each clause, one for each literal.
    • Connect 3 literals in a clause in a triangle.
    • Connect literal to each of its negations

    构造方法是这样的把图G分为三个模块每一个模块由三个顶点构成,每一个模块中的三条边对应文法式中的一个子文法,三个模块之间的连接点由文法式中有“非”运算的对等结点。

    1.1.3 必要性

    定理:Φ is satisfiable iff G contains an independent set of size k = ⎜Φ⎜.
    Pf.
    ⇐ Consider any satisfying assignment for Φ.

    • Select one true literal from each clause/triangle.
    • This is an independent set of size k = ⎜Φ⎜.

    考虑任意一种3元可满足性解,就拿一个实例x1=true,x2=true,x3=true,x4=true.
    在图G中标记出值为True的结点,很显然这些结点不能构成独立集!
    结论:“no” instances of 3-SAT are solved correctly!

    1.1.4 充分性

    定理:Φ is satisfiable iff G contains an independent set of size k = ⎜Φ⎜.
    Pf. ⇒ Let S be independent set of size k.

    • S must contain exactly one node in each triangle.
    • Set these literals to true (and remaining literals consistently).
    • All clauses in Φ are satisfied.

    如果S独立集的大小为k,那么S必然在每一个小三角形模块中包含一个结点。比如我们选每个三角形最上面的结点,按照规定这三个结点的值为TRUE。
    那么对应的文法式有x1=false,x2=false,x3=?,x4=?,x3,x4任意取值。显然文法式成立!
    结论:yes” instances of 3-SAT are solved correctly!

  • 相关阅读:
    angularjs学习笔记—工具方法
    js日期格式转换的相关问题探讨
    vue路由原理剖析
    如何减少UI设计师产品与前端工程师的沟通成本
    前端优化带来的思考,浅谈前端工程化
    前端入门方法
    自写juqery插件实现左右循环滚动效果图
    前端大综合
    前端收集
    如何在代码中减少if else语句的使用
  • 原文地址:https://www.cnblogs.com/xhj928675426/p/13973076.html
Copyright © 2011-2022 走看看