最近接触到了遗传算法以及利用遗传算法求最优解,所以就把这些相关的内容整理记录一下。
一、遗传算法简介(摘自维基百科)
遗传算法(英语:genetic algorithm (GA))是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。
算法
- 选择初始生命种群
- 循环
- 评价种群中的个体适应度
- 以比例原则(分数高的挑中概率也较高)选择产生下一个种群。
- 改变该种群(交叉和变异)
- 直到停止循环的条件满足
适用问题
遗传算法擅长解决的问题是全局最优化问题。
跟传统的爬山算法相比,遗传算法能够跳出局部最优而找到全局最优点。而且遗传算法允许使用非常复杂的适应度函数(或者叫做目标函数),并对变量的变化范围可以加以限制。
二、MATLAB中的GA函数
- X = ga(FITNESSFCN, NVARS)
这是GA函数最简单的调用方法,其中FITNESSFCN是目标函数,其参数应为一向量,NVARS则是参数向量的维度。
X是目标函数值为最小时的参数向量。 - X = ga(FITNESSFCN, NVARS, A, b, Aeq, beq, lb, ub, NONLCON, options)
这些参数用于约束X:- AX <= B, AeqX = Beq (线性约束)
- LB <= X <= UB
- NONLCON:定义C(X) <= 0, Ceq(X) = 0(非线性约束)
- options:设置GA的相关参数
- [X,FVAL,EXITFLAG,OUTPUT] = ga(FITNESSFCN, ...)
- FVAL是在目标函数的参数为X时的值
- EXITFLAG是结束遗传算法计算的标志
-0 Maximum number of generations exceeded.
-1 Optimization terminated by the output or plot function.
-2 No feasible point found.
-4 Stall time limit exceeded.
-5 Time limit exceeded. - OUTPUT结构体包含了遗传代数、输出种群等信息
- options
options = gaoptimset(); options.Generations=5000; %迭代次数 options.PopulationSize=30; %种群数目
三、一个实例
假设要求目标函数f = (339-0.01*x1-0.003*x2)*x1 + (399-0.004*x1-0.01*x2)*x2 - (400000+195*x1+225*x2);
的最大值。
首先编写目标函数myfit.m
:
function f = myfit( x ) f = (339-0.01*x(1)-0.003*x(2))*x(1)... + (399-0.004*x(1)-0.01*x(2))*x(2)... - (400000+195*x(1)+225*x(2)); f = -f; %因为GA是寻找最小值,所以为了求这个函数的最大值,取f的相反数 end
调用GA函数:
X =ga(@myfit, 2)
结果显示: Optimization terminated: maximum number of generations exceeded.
说明迭代达到最大次数仍未求得最优解。因此下面通过options增大迭代次数:
options = gaoptimset(); options.Generations = 2000; %最大迭代数设为2000 %再次调用GA函数 [X,FVAL,EXITFLAG,OUTPUT] =ga(@myfit, 2 ,[], [],[],[],[],[],[],options);
结果显示: Optimization terminated: average change in the fitness value less than options.TolFun.
此时
4.7350 7.0429
FVAL = -5.5364e+05
这个结果与对目标函数 x1、x2 分别求偏导得到的结果(x1=4735, x2=7043, y=553641)是一致的,表明结果正确。
四、其他求最优解的方法
MATLAB还有许多其他求最优解的常用函数,如 fmincon()、fminsearch()、fminimax()等。