zoukankan      html  css  js  c++  java
  • 如何合理设置线程池大小

    要想合理的配置线程池的大小,首先得分析任务的特性,可以从以下几个角度分析:

    1. 任务的性质:CPU密集型任务、IO密集型任务、混合型任务。
    2. 任务的优先级:高、中、低。
    3. 任务的执行时间:长、中、短。
    4. 任务的依赖性:是否依赖其他系统资源,如数据库连接等。

    性质不同的任务可以交给不同规模的线程池执行。

    对于不同性质的任务来说,CPU密集型任务应配置尽可能小的线程,如配置CPU个数+1的线程数,IO密集型任务应配置尽可能多的线程,因为IO操作不占用CPU,不要让CPU闲下来,应加大线程数量,如配置两倍CPU个数+1,而对于混合型的任务,如果可以拆分,拆分成IO密集型和CPU密集型分别处理,前提是两者运行的时间是差不多的,如果处理时间相差很大,则没必要拆分了。

    若任务对其他系统资源有依赖,如某个任务依赖数据库的连接返回的结果,这时候等待的时间越长,则CPU空闲的时间越长,那么线程数量应设置得越大,才能更好的利用CPU。
    当然具体合理线程池值大小,需要结合系统实际情况,在大量的尝试下比较才能得出,以上只是前人总结的规律。

    在这篇如何合理地估算线程池大小?文章中发现了一个估算合理值的公式

    最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目
    

    比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

    最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目
    

    可以得出一个结论:
    线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。
    以上公式与之前的CPU和IO密集型任务设置线程数基本吻合。

    并发编程网上的一个问题
    高并发、任务执行时间短的业务怎样使用线程池?并发不高、任务执行时间长的业务怎样使用线程池?并发高、业务执行时间长的业务怎样使用线程池?
    (1)高并发、任务执行时间短的业务,线程池线程数可以设置为CPU核数+1,减少线程上下文的切换
    (2)并发不高、任务执行时间长的业务要区分开看:
      a)假如是业务时间长集中在IO操作上,也就是IO密集型的任务,因为IO操作并不占用CPU,所以不要让所有的CPU闲下来,可以适当加大线程池中的线程数目,让CPU处理更多的业务
      b)假如是业务时间长集中在计算操作上,也就是计算密集型任务,这个就没办法了,和(1)一样吧,线程池中的线程数设置得少一些,减少线程上下文的切换
    (3)并发高、业务执行时间长,解决这种类型任务的关键不在于线程池而在于整体架构的设计,看看这些业务里面某些数据是否能做缓存是第一步,增加服务器是第二步,至于线程池的设置,设置参考(2)。最后,业务执行时间长的问题,也可能需要分析一下,看看能不能使用中间件对任务进行拆分和解耦。

    如何合理地估算线程池大小?

    这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:

    如何设计线程池大小,使得可以在1s内处理完20个Transaction?

    计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。

    很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。

    再来第二种简单的但不知是否可行的方法(N为CPU总核数):

    • 如果是CPU密集型应用,则线程池大小设置为N+1
    • 如果是IO密集型应用,则线程池大小设置为2N+1

    如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。

    接下来在这个文档:服务器性能IO优化 中发现一个估算公式:

    1 最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

    比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

    1 最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

    可以得出一个结论:

    线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。

    上一种估算方法也和这个结论相合。

    一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:

    • 尽量提高短板操作的并行化比率,比如多线程下载技术
    • 增强短板能力,比如用NIO替代IO

    第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:

    1 加速比=优化前系统耗时 / 优化后系统耗时

    加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:

    1 Speedup <= 1 / (F + (1-F)/N)

    当N足够大时,串行化比率F越小,加速比Speedup越大。

    写到这里,我突然冒出一个问题。

    是否使用线程池就一定比使用单线程高效呢?

    答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:

    • 多线程带来线程上下文切换开销,单线程就没有这种开销

    当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。

    所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。

    最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:

    001 package pool_size_calculate;
    002  
    003 import java.math.BigDecimal;
    004 import java.math.RoundingMode;
    005 import java.util.Timer;
    006 import java.util.TimerTask;
    007 import java.util.concurrent.BlockingQueue;
    008  
    009 /**
    010  * A class that calculates the optimal thread pool boundaries. It takes the
    011  * desired target utilization and the desired work queue memory consumption as
    012  * input and retuns thread count and work queue capacity.
    013  *
    014  * @author Niklas Schlimm
    015  *
    016  */
    017 public abstract class PoolSizeCalculator {
    018  
    019     /**
    020      * The sample queue size to calculate the size of a single {@link Runnable}
    021      * element.
    022      */
    023     private final int SAMPLE_QUEUE_SIZE = 1000;
    024  
    025     /**
    026      * Accuracy of test run. It must finish within 20ms of the testTime
    027      * otherwise we retry the test. This could be configurable.
    028      */
    029     private final int EPSYLON = 20;
    030  
    031     /**
    032      * Control variable for the CPU time investigation.
    033      */
    034     private volatile boolean expired;
    035  
    036     /**
    037      * Time (millis) of the test run in the CPU time calculation.
    038      */
    039     private final long testtime = 3000;
    040  
    041     /**
    042      * Calculates the boundaries of a thread pool for a given {@link Runnable}.
    043      *
    044      * @param targetUtilization
    045      *            the desired utilization of the CPUs (0 <= targetUtilization <=   *            1)     * @param targetQueueSizeBytes   *            the desired maximum work queue size of the thread pool (bytes)     */     protected void calculateBoundaries(BigDecimal targetUtilization,            BigDecimal targetQueueSizeBytes) {      calculateOptimalCapacity(targetQueueSizeBytes);         Runnable task = creatTask();        start(task);        start(task); // warm up phase       long cputime = getCurrentThreadCPUTime();       start(task); // test intervall      cputime = getCurrentThreadCPUTime() - cputime;      long waittime = (testtime * 1000000) - cputime;         calculateOptimalThreadCount(cputime, waittime, targetUtilization);  }   private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {        long mem = calculateMemoryUsage();      BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(              mem), RoundingMode.HALF_UP);        System.out.println("Target queue memory usage (bytes): "                + targetQueueSizeBytes);        System.out.println("createTask() produced "                 + creatTask().getClass().getName() + " which took " + mem               + " bytes in a queue");         System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);       System.out.println("* Recommended queue capacity (bytes): "                 + queueCapacity);   }   /**      * Brian Goetz' optimal thread count formula, see 'Java Concurrency in   * Practice' (chapter 8.2)   *       * @param cpu    *            cpu time consumed by considered task   * @param wait   *            wait time of considered task   * @param targetUtilization      *            target utilization of the system   */     private void calculateOptimalThreadCount(long cpu, long wait,           BigDecimal targetUtilization) {         BigDecimal waitTime = new BigDecimal(wait);         BigDecimal computeTime = new BigDecimal(cpu);       BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()                .availableProcessors());        BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)                 .multiply(                      new BigDecimal(1).add(waitTime.divide(computeTime,                              RoundingMode.HALF_UP)));        System.out.println("Number of CPU: " + numberOfCPU);        System.out.println("Target utilization: " + targetUtilization);         System.out.println("Elapsed time (nanos): " + (testtime * 1000000));        System.out.println("Compute time (nanos): " + cpu);         System.out.println("Wait time (nanos): " + wait);       System.out.println("Formula: " + numberOfCPU + " * "                + targetUtilization + " * (1 + " + waitTime + " / "                 + computeTime + ")");       System.out.println("* Optimal thread count: " + optimalthreadcount);    }   /**      * Runs the {@link Runnable} over a period defined in {@link #testtime}.     * Based on Heinz Kabbutz' ideas     * (http://www.javaspecialists.eu/archive/Issue124.html).    *       * @param task   *            the runnable under investigation   */     public void start(Runnable task) {      long start = 0;         int runs = 0;       do {            if (++runs > 5) {
    046                 throw new IllegalStateException("Test not accurate");
    047             }
    048             expired = false;
    049             start = System.currentTimeMillis();
    050             Timer timer = new Timer();
    051             timer.schedule(new TimerTask() {
    052                 public void run() {
    053                     expired = true;
    054                 }
    055             }, testtime);
    056             while (!expired) {
    057                 task.run();
    058             }
    059             start = System.currentTimeMillis() - start;
    060             timer.cancel();
    061         } while (Math.abs(start - testtime) > EPSYLON);
    062         collectGarbage(3);
    063     }
    064  
    065     private void collectGarbage(int times) {
    066         for (int i = 0; i < times; i++) {
    067             System.gc();
    068             try {
    069                 Thread.sleep(10);
    070             } catch (InterruptedException e) {
    071                 Thread.currentThread().interrupt();
    072                 break;
    073             }
    074         }
    075     }
    076  
    077     /**
    078      * Calculates the memory usage of a single element in a work queue. Based on
    079      * Heinz Kabbutz' ideas
    080      * (http://www.javaspecialists.eu/archive/Issue029.html).
    081      *
    082      * @return memory usage of a single {@link Runnable} element in the thread
    083      *         pools work queue
    084      */
    085     public long calculateMemoryUsage() {
    086         BlockingQueue queue = createWorkQueue();
    087         for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
    088             queue.add(creatTask());
    089         }
    090         long mem0 = Runtime.getRuntime().totalMemory()
    091                 - Runtime.getRuntime().freeMemory();
    092         long mem1 = Runtime.getRuntime().totalMemory()
    093                 - Runtime.getRuntime().freeMemory();
    094         queue = null;
    095         collectGarbage(15);
    096         mem0 = Runtime.getRuntime().totalMemory()
    097                 - Runtime.getRuntime().freeMemory();
    098         queue = createWorkQueue();
    099         for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
    100             queue.add(creatTask());
    101         }
    102         collectGarbage(15);
    103         mem1 = Runtime.getRuntime().totalMemory()
    104                 - Runtime.getRuntime().freeMemory();
    105         return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
    106     }
    107  
    108     /**
    109      * Create your runnable task here.
    110      *
    111      * @return an instance of your runnable task under investigation
    112      */
    113     protected abstract Runnable creatTask();
    114  
    115     /**
    116      * Return an instance of the queue used in the thread pool.
    117      *
    118      * @return queue instance
    119      */
    120     protected abstract BlockingQueue createWorkQueue();
    121  
    122     /**
    123      * Calculate current cpu time. Various frameworks may be used here,
    124      * depending on the operating system in use. (e.g.
    125      * http://www.hyperic.com/products/sigar). The more accurate the CPU time
    126      * measurement, the more accurate the results for thread count boundaries.
    127      *
    128      * @return current cpu time of current thread
    129      */
    130     protected abstract long getCurrentThreadCPUTime();
    131  
    132 }

    然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:

    01 package pool_size_calculate;
    02  
    03 import java.io.BufferedReader;
    04 import java.io.IOException;
    05 import java.io.InputStreamReader;
    06 import java.lang.management.ManagementFactory;
    07 import java.math.BigDecimal;
    08 import java.net.HttpURLConnection;
    09 import java.net.URL;
    10 import java.util.concurrent.BlockingQueue;
    11 import java.util.concurrent.LinkedBlockingQueue;
    12  
    13 public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {
    14  
    15     @Override
    16     protected Runnable creatTask() {
    17         return new AsyncIOTask();
    18     }
    19  
    20     @Override
    21     protected BlockingQueue createWorkQueue() {
    22         return new LinkedBlockingQueue(1000);
    23     }
    24  
    25     @Override
    26     protected long getCurrentThreadCPUTime() {
    27         return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
    28     }
    29  
    30     public static void main(String[] args) {
    31         PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
    32         poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
    33     }
    34  
    35 }
    36  
    37 /**
    38  * 自定义的异步IO任务
    39  * @author Will
    40  *
    41  */
    42 class AsyncIOTask implements Runnable {
    43  
    44     @Override
    45     public void run() {
    46         HttpURLConnection connection = null;
    47         BufferedReader reader = null;
    48         try {
    49             String getURL = "http://baidu.com";
    50             URL getUrl = new URL(getURL);
    51  
    52             connection = (HttpURLConnection) getUrl.openConnection();
    53             connection.connect();
    54             reader = new BufferedReader(new InputStreamReader(
    55                     connection.getInputStream()));
    56  
    57             String line;
    58             while ((line = reader.readLine()) != null) {
    59                 // empty loop
    60             }
    61         }
    62  
    63         catch (IOException e) {
    64  
    65         } finally {
    66             if(reader != null) {
    67                 try {
    68                     reader.close();
    69                 }
    70                 catch(Exception e) {
    71  
    72                 }
    73             }
    74             connection.disconnect();
    75         }
    76  
    77     }
    78  
    79 }

    得到的输出如下:

    01 Target queue memory usage (bytes): 100000
    02 createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue
    03 Formula: 100000 / 40
    04 * Recommended queue capacity (bytes): 2500
    05 Number of CPU: 4
    06 Target utilization: 1
    07 Elapsed time (nanos): 3000000000
    08 Compute time (nanos): 47181000
    09 Wait time (nanos): 2952819000
    10 Formula: 4 * 1 * (1 + 2952819000 / 47181000)
    11 * Optimal thread count: 256

    推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:

    1 ThreadPoolExecutor pool =
    2  new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));

    原创文章,转载请注明: 转载自并发编程网 – ifeve.com本文链接地址: 如何合理地估算线程池大小?

  • 相关阅读:
    纯CSS制作二级导航
    用python写MapReduce函数——以WordCount为例
    hadoop安装配置——伪分布模式
    字符串中最长不重合子串长度
    从30岁到35岁:为你的生命多积累一些厚度
    Hbase快速开始——shell操作
    5句话
    []leetcode]Unique Paths II
    [leetcode]Gray Code
    linux 命令案例学习——文件搜索
  • 原文地址:https://www.cnblogs.com/xiang--liu/p/9710096.html
Copyright © 2011-2022 走看看