zoukankan      html  css  js  c++  java
  • 概率图模型2:隐马尔科夫(2)

    上一节我们介绍了隐马尔科夫的概率计算问题,本节,我们介绍一下隐马尔科夫的学习问题。在介绍学习问题之前,先让我们用python来实现几个重要概念。
    需要注意的是:下面的代码根据的是李航《统计学习方法》中的原始公式。这里的公式没有取对数。因此如果你生成的数据超过300,就会发现明显的溢出问题。因此下面的代码是个玩具。我们先给出这个代码,之后,在给出取对数后的代码。

    #!/usr/bin/env python
    # -*- coding: UTF-8 -*-
    """
    @author: XiangguoSun
    @contact: sunxiangguodut@qq.com
    @file: HMM.py
    @time: 2017/3/27 12:40
    @software: PyCharm
    """
    import numpy as np
    
    
    def simulate(model,T):
        A = model[0]
        B = model[1]
        pi = model[2]
        def draw_from(probs):
            return np.where(np.random.multinomial(1, probs) == 1)[0][0]
    
        observations = np.zeros(T, dtype=int)
        states = np.zeros(T, dtype=int)
        states[0] = draw_from(pi)
        observations[0] = draw_from(B[states[0], :])
        for t in range(1, T):
            states[t] = draw_from(A[states[t - 1], :])
            observations[t] = draw_from(B[states[t], :])
    
        pp = np.unique(states)
        return observations,pp
    
    
    def forward_prob(model, Observe):
        '''
        马尔科夫前向算法
        '''
    
        A, B, pi = model
        T = Observe.size
    
        alpha = pi*B[:, Observe[0]]
        alpha_all = np.copy(alpha).reshape((1, -1))
    
        # print "(1)计算初值alpha_1(i):   ",alpha
        #
        # print "(2) 递推..."
        for t in xrange(0, T-1):
            alpha = alpha.dot(A)*B[:, Observe[t+1]]
            alpha_all = np.append(alpha_all, alpha.reshape((1, -1)), 0)
            # print "t=", t + 1, "   alpha_", t + 1, "(i):", alpha
    
        # print "(3)终止。alpha_",T,"(i):    ", alpha
        # print "输出Prob:  ",alpha.sum()
        return alpha.sum(),alpha_all
    
    def backward_prob(model,Observe,States):
        '''
          马尔科夫后向算法
          '''
    
        A, B, pi = model
        M = States.size
        T = Observe.size
    
        beta = np.ones((M,))  # beta_T
        beta_all = np.copy(beta).reshape((1,-1))
        # print "(1)计算初值beta_",T,"(i):   ", beta
    
        # print "(2) 递推..."
        for t in xrange(T - 2, -1, -1):  # t=T-2,...,0
            beta = A.dot(B[:, Observe[t + 1]] * beta)
            beta_all = np.append(beta_all, beta.reshape((1, -1)), 0)
            # print "t=", t + 1, "   beta_", t + 1, "(i):", beta
    	beta_all = beta_all[::-1,:]
        # print "(3)终止。alpha_", 1, "(i):    ", beta
        prob = pi.dot(beta * B[:, Observe[0]])
        # print "输出Prob:  ", prob
        return prob,beta_all
    
    
    def getPar(model, Observe, States):
        '''得到alpha_all和beta_all'''
    
        T = Observe.size
    
        prob_1, alpha_all = forward_prob(model, Observe)
        prob_2, beta_all = backward_prob(model, Observe, States)
    
        #print "alpha_all:   ", alpha_all
        #print "beta_all:    ", beta_all
        '''根据alpha_all和beta_all计算gamma和xi矩阵'''
        # 计算gamma矩阵
        denominator = (alpha_all * beta_all).sum(1)
        #print denominator
        #print alpha_all * beta_all
        gamma = alpha_all * beta_all / denominator.reshape((-1, 1))
        # print "gamma is :"
        # print gamma  # gamma行表示时刻t,列表示状态i
        # # 计算xi矩阵
        item_t = []
        for t in xrange(0, T - 1):
            item_t.append(((alpha_all[t] * (A.T)).T) * (B[:, Observe[t + 1]] * beta_all[t + 1]))
        ProOut_t = np.array(item_t)
        denomin = ProOut_t.sum(1).sum(1)
        xi = ProOut_t / (denomin.reshape(-1, 1, 1))  # xi axi0表示时刻t,axi1和2表示对应的i,j
        # print "xi is :"
        # print xi
    
        '''根据gamma 和xi 计算几个重要的期望值'''
        # print ProOut_t
        iTga = gamma.sum(0)
        iT_1ga = gamma[0:-1, :].sum(0)
        ijT_1xi = xi.sum(0)
    
        return gamma, xi, iTga, iT_1ga, ijT_1xi
    
    
    def baum_welch(Observe,States,modell,epsion=0.001):
    
        model = modell
        A,B,pi = model
        M = B.shape[1]
    
        done = False
        while not done:
            gamma, xi, iTga, iT_1ga, ijT_1xi = getPar(model,Observe,States)
            new_A = ijT_1xi/iT_1ga
    
            bb = []
            for k in xrange(0,M):
                I = np.where(k == Observe, 1,0)
                gamma_temp = ((gamma.T)*I).T
                bb.append(gamma_temp.sum(0)/iTga)
            new_B = np.array(bb).T
            #print new_B
    
            new_pi = gamma[0]
    
    
            if np.max(abs(new_A-A))<epsion and 
                np.max(abs(new_B-B))<epsion and 
                np.max(abs(new_pi-pi))<epsion:
                done = True
            A = new_A
            B = new_B
            pi = new_pi
            model = (A,B,pi)
    
        return model
    
    
    
    if __name__ == '__main__':
    
        #这是我们的实际模型参数:
        A = np.array([[0.5, 0.2, 0.3],
                      [0.3, 0.5, 0.2],
                      [0.2, 0.3, 0.5]])
        B = np.array([[0.5, 0.5],
                      [0.4, 0.6],
                      [0.7, 0.3]])
        pi = np.array([0.2, 0.4, 0.4])
        model = (A, B, pi)
    
        #下面我们用实际的模型参数来生成测试数据
        Observe, States = simulate(model,100)
        print "Observe 
    ",Observe
        print "States 
    ", States
    
        #模型初始化
        iniA = np.array([[0.3, 0.3, 0.3],
                      [0.3, 0.3, 0.3],
                      [0.3, 0.3, 0.3]])
        iniB = np.array([[0.5, 0.5],
                      [0.5, 0.5],
                      [0.5, 0.5]])
        inipi = np.array([0.3, 0.3, 0.3])
        inimodel = (iniA, iniB, inipi)
        model = baum_welch(Observe,States,inimodel,0.001)
    
        print "A: "
        print model[0]
        print "B: "
        print model[1]
        print "pi: "
        print model[2]
    

    这里写图片描述
    从实验结果上看,A矩阵的估计时最准确的,B矩阵稍差,pi最不准确。对于隐马尔科夫的参数估计,采用非监督的baum-welch方法并不是特别出色。需要有更多的样本数据。

  • 相关阅读:
    wifi通信过程的研究--(2)Wifi传输认证过程
    wifi通信过程的研究--(1)Wifi基本属性介绍
    wifi通信过程的研究--(3)传输过程概念细分
    网络编程之TCP/IP各层详解
    持续集成CI与自动化构建
    IEEE 802.11标准列表
    IEEE802.11协议基础知识
    IEEE 802.11协议基础知识整理
    beacon帧字段结构最全总结(三)——VHT字段总结
    beacon帧字段结构最全总结(二)——HT字段总结
  • 原文地址:https://www.cnblogs.com/xiangguosun/p/6785381.html
Copyright © 2011-2022 走看看