zoukankan      html  css  js  c++  java
  • Python 之进程

    要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识。

    Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。

    子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID。

    Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程:

    import os
    
    print('Process (%s) start...' % os.getpid())
    # Only works on Unix/Linux/Mac:
    pid = os.fork()
    if pid == 0:
        print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid()))
    else:
        print('I (%s) just created a child process (%s).' % (os.getpid(), pid))
    

    运行结果如下:

    Process (876) start...
    I (876) just created a child process (877).
    I am child process (877) and my parent is 876.
    

    由于Windows没有fork调用,上面的代码在Windows上无法运行。由于Mac系统是基于BSD(Unix的一种)内核,所以,在Mac下运行是没有问题的,推荐大家用Mac学Python!

    有了fork调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。

    multiprocessing

    如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序?

    由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing模块就是跨平台版本的多进程模块。

    multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:

    from multiprocessing import Process
    import os
    import time
    import random

    # 子进程要执行的代码

    def run_childprocess(name):
    print(time.ctime())
    print('%s(id:%s)购买成功' % (name,os.getpid()))

    if __name__ == '__main__':
    print('mainprocess,父进程%s' % os.getpid())
    p = Process(target=run_childprocess,args=('大娃',))
    p2 = Process(target=run_childprocess,args=('金刚娃',))
    p3 = Process(target=run_childprocess,args=('水娃',))
    p4 = Process(target=run_childprocess,args=('火娃',))
    print('All children process will start.')
    p.start()
    p2.start()
    p3.start()
    p4.start()
    p.join()
    print('Child process end.')
    #如果要启动大量的进程,应该用进程池

    Pool

    如果要启动大量的子进程,可以用进程池的方式批量创建子进程:

    from multiprocessing import Pool
    import multiprocessing
    import os
    import time
    import random

    def run_childprocess(name):
    print(time.ctime())
    print('%s(id:%s)购买成功' % (name,os.getpid()))

    if __name__ == '__main__':
    print('main主进程 process %s.' % os.getpid())
      print(multiprocessing.cpu_count()) #可以知道丐太电脑有多少个进程
    p = Pool(multiprocessing.cpu_count()) # multiprocessing.cpu_count() 可以知道电脑cpu有多少核,一个核一个进程.
    namelist = ['大娃','金刚娃','火娃','水娃','隐身娃','天真娃']
    for i in range(6):
    p.apply_async(run_childprocess,args=(namelist[i],))
        p.map_async(run_childprocess,namelist)   #也可以这样写
        print('Waiting for all subprocesses done...')
    p.close()
    p.join()
    print('All subprocesses done.')

    Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。

    子进程

    很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。

    subprocess模块可以让我们非常方便地启动一个子进程,然后控制其输入和输出。

    下面的例子演示了如何在Python代码中运行命令nslookup www.python.org,这和命令行直接运行的效果是一样的:

    import subprocess
    
    print('$ nslookup www.python.org')
    r = subprocess.call(['nslookup', 'www.python.org'])
    print('Exit code:', r)
    

    运行结果:

    $ nslookup www.python.org
    Server:        192.168.19.4
    Address:    192.168.19.4#53
    
    Non-authoritative answer:
    www.python.org    canonical name = python.map.fastly.net.
    Name:    python.map.fastly.net
    Address: 199.27.79.223
    
    Exit code: 0


    子进程

    很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。

    subprocess模块可以让我们非常方便地启动一个子进程,然后控制其输入和输出。

    下面的例子演示了如何在Python代码中运行命令nslookup www.python.org,这和命令行直接运行的效果是一样的:

    import subprocess
    
    print('$ nslookup www.python.org')
    r = subprocess.call(['nslookup', 'www.python.org'])
    print('Exit code:', r)
    

    运行结果:

    $ nslookup www.python.org
    Server:        192.168.19.4
    Address:    192.168.19.4#53
    
    Non-authoritative answer:
    www.python.org    canonical name = python.map.fastly.net.
    Name:    python.map.fastly.net
    Address: 199.27.79.223
    
    Exit code: 0
    

    如果子进程还需要输入,则可以通过communicate()方法输入:

    import subprocess
    
    print('$ nslookup')
    p = subprocess.Popen(['nslookup'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    output, err = p.communicate(b'set q=mx
    python.org
    exit
    ')
    print(output.decode('utf-8'))
    print('Exit code:', p.returncode)
    

    上面的代码相当于在命令行执行命令nslookup,然后手动输入:

    set q=mx
    python.org
    exit
    

    运行结果如下:

    $ nslookup
    Server:        192.168.19.4
    Address:    192.168.19.4#53
    
    Non-authoritative answer:
    python.org    mail exchanger = 50 mail.python.org.
    
    Authoritative answers can be found from:
    mail.python.org    internet address = 82.94.164.166
    mail.python.org    has AAAA address 2001:888:2000:d::a6
    
    
    Exit code: 0


    进程间通信

    Process之间肯定是需要通信的,操作系统提供了很多机制来实现进程间的通信。Python的multiprocessing模块包装了底层的机制,提供了QueuePipes等多种方式来交换数据。

    我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

    from multiprocessing import Process, Queue
    import os, time, random
    
    # 写数据进程执行的代码:
    def write(q):
        print('Process to write: %s' % os.getpid())
        for value in ['A', 'B', 'C']:
            print('Put %s to queue...' % value)
            q.put(value)
            time.sleep(random.random())
    
    # 读数据进程执行的代码:
    def read(q):
        print('Process to read: %s' % os.getpid())
        while True:
            value = q.get(True)
            print('Get %s from queue.' % value)
    
    if __name__=='__main__':
        # 父进程创建Queue,并传给各个子进程:
        q = Queue()
        pw = Process(target=write, args=(q,))
        pr = Process(target=read, args=(q,))
        # 启动子进程pw,写入:
        pw.start()
        # 启动子进程pr,读取:
        pr.start()
        # 等待pw结束:
        pw.join()
        # pr进程里是死循环,无法等待其结束,只能强行终止:
        pr.terminate()
    

    运行结果如下:

    Process to write: 50563
    Put A to queue...
    Process to read: 50564
    Get A from queue.
    Put B to queue...
    Get B from queue.
    Put C to queue...
    Get C from queue.
    

    在Unix/Linux下,multiprocessing模块封装了fork()调用,使我们不需要关注fork()的细节。由于Windows没有fork调用,因此,multiprocessing需要“模拟”出fork的效果,父进程所有Python对象都必须通过pickle序列化再传到子进程去,所有,如果multiprocessing在Windows下调用失败了,要先考虑是不是pickle失败了。

  • 相关阅读:
    WPF 关于拖拽打开文件的注意事项
    asp.net core 3.1中对Mongodb BsonDocument的序列化和反序列化支持
    用百度webuploader分片上传大文件
    多线程学习笔记
    web.config数据库连接字符串加密
    Visual Studio 2010 常用快捷方式
    Team Foundation Server 2013 日常使用使用手册(四)分支与合并
    Team Foundation Server 2013 日常使用使用手册(三)上传新工程、创建任务、创建bug、设置预警
    Team Foundation Server 2013 日常使用使用手册(二)修改、签入、撤销、回滚、对比代码变更
    Team Foundation Server 2013 日常使用使用手册(一)-本地连接TFS、查看任务
  • 原文地址:https://www.cnblogs.com/xiangqianzou/p/7008033.html
Copyright © 2011-2022 走看看