zoukankan      html  css  js  c++  java
  • 计算灰度共生矩阵

    %**************************************************************************
    %                   图像检索——纹理特征
    %基于共生矩阵纹理特征提取,d=1,θ=0°,45°,90°,135°共四个矩阵
    %所用图像灰度级均为256
    %参考《基于颜色空间和纹理特征的图像检索》
    %function : T=Texture(Image)
    %Image    : 输入图像数据
    %T        : 返回八维纹理特征行向量
    %**************************************************************************
    % function T = Texture(Image)
    clc;
    Image = imread('E:\14.jpg');
    [M,N,O] = size(Gray);
    M = 128;
    N = 128;

    %--------------------------------------------------------------------------
    %1.将各颜色分量转化为灰度
    %--------------------------------------------------------------------------
    Gray = double(0.3*Image(:,:,1)+0.59*Image(:,:,2)+0.11*Image(:,:,3));

    %--------------------------------------------------------------------------
    %2.为了减少计算量,对原始图像灰度级压缩,将Gray量化成16级
    %--------------------------------------------------------------------------
    for i = 1:M
        for j = 1:N
            for n = 1:256/16
                if (n-1)*16<=Gray(i,j)&Gray(i,j)<=(n-1)*16+15
                    Gray(i,j) = n-1;
                end
            end
        end
    end

    %--------------------------------------------------------------------------
    %3.计算四个共生矩阵P,取距离为1,角度分别为0,45,90,135
    %--------------------------------------------------------------------------
    P = zeros(16,16,4);
    for m = 1:16
        for n = 1:16
            for i = 1:M
                for j = 1:N
                    if j<N&Gray(i,j)==m-1&Gray(i,j+1)==n-1
                        P(m,n,1) = P(m,n,1)+1;
                        P(n,m,1) = P(m,n,1);
                    end
                    if i>1&j<N&Gray(i,j)==m-1&Gray(i-1,j+1)==n-1
                        P(m,n,2) = P(m,n,2)+1;
                        P(n,m,2) = P(m,n,2);
                    end
                    if i<M&Gray(i,j)==m-1&Gray(i+1,j)==n-1
                        P(m,n,3) = P(m,n,3)+1;
                        P(n,m,3) = P(m,n,3);
                    end
                    if i<M&j<N&Gray(i,j)==m-1&Gray(i+1,j+1)==n-1
                        P(m,n,4) = P(m,n,4)+1;
                        P(n,m,4) = P(m,n,4);
                    end
                end
            end
            if m==n
                P(m,n,:) = P(m,n,:)*2;
            end
        end
    end

    %%---------------------------------------------------------
    % 对共生矩阵归一化
    %%---------------------------------------------------------
    for n = 1:4
        P(:,:,n) = P(:,:,n)/sum(sum(P(:,:,n)));
    end

    %--------------------------------------------------------------------------
    %4.对共生矩阵计算能量、熵、惯性矩、相关4个纹理参数
    %--------------------------------------------------------------------------
    H = zeros(1,4);
    I = H;
    Ux = H;      Uy = H;
    deltaX= H;  deltaY = H;
    C =H;
    for n = 1:4
        E(n) = sum(sum(P(:,:,n).^2)); %%能量
        for i = 1:16
            for j = 1:16
                if P(i,j,n)~=0
                    H(n) = -P(i,j,n)*log(P(i,j,n))+H(n); %%熵
                end
                I(n) = (i-j)^2*P(i,j,n)+I(n);  %%惯性矩
              
                Ux(n) = i*P(i,j,n)+Ux(n); %相关性中μx
                Uy(n) = j*P(i,j,n)+Uy(n); %相关性中μy
            end
        end
    end
    for n = 1:4
        for i = 1:16
            for j = 1:16
                deltaX(n) = (i-Ux(n))^2*P(i,j,n)+deltaX(n); %相关性中σx
                deltaY(n) = (j-Uy(n))^2*P(i,j,n)+deltaY(n); %相关性中σy
                C(n) = i*j*P(i,j,n)+C(n);            
            end
        end
        C(n) = (C(n)-Ux(n)*Uy(n))/deltaX(n)/deltaY(n); %相关性  
    end

    %--------------------------------------------------------------------------
    %求能量、熵、惯性矩、相关的均值和标准差作为最终8维纹理特征
    %--------------------------------------------------------------------------
    a1 = mean(E)  
    b1 = sqrt(cov(E))

    a2 = mean(H)
    b2 = sqrt(cov(H))

    a3 = mean(I) 
    b3 = sqrt(cov(I))

    a4 = mean(C)
    b4 = sqrt(cov(C))

    sprintf('0,45,90,135方向上的能量依次为: %f, %f, %f, %f',E(1),E(2),E(3),E(4))  % 输出数据;
    sprintf('0,45,90,135方向上的熵依次为: %f, %f, %f, %f',H(1),H(2),H(3),H(4))  % 输出数据;
    sprintf('0,45,90,135方向上的惯性矩依次为: %f, %f, %f, %f',I(1),I(2),I(3),I(4))  % 输出数据;
    sprintf('0,45,90,135方向上的相关性依次为: %f, %f, %f, %f',C(1),C(2),C(3),C(4))  % 输出数据;
  • 相关阅读:
    css之position
    js之循环语句
    js之条件判断
    js之字典操作
    js之获取html标签的值
    5.15 牛客挑战赛40 C 小V和字符串 数位dp 计数问题
    5.21 省选模拟赛 luogu P4297 [NOI2006]网络收费 树形dp
    luogu P4525 自适应辛普森法1
    luogu P1784 数独 dfs 舞蹈链 DXL
    5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法
  • 原文地址:https://www.cnblogs.com/xiangshancuizhu/p/2041849.html
Copyright © 2011-2022 走看看