zoukankan      html  css  js  c++  java
  • 阈值分割总结

    OSTU C++实现:

    #include <assert.h>
    #include "cv.h"
    #include "highgui.h"
    #include <math.h> 
    #include <iostream>
    using namespace std;
    // implementation of otsu algorithm
    // author: onezeros(@yahoo.cn)
    // reference: Rafael C. Gonzalez. Digital Image Processing Using MATLAB
    void cvThresholdOtsu(IplImage* src, IplImage* dst)
    {
    	int height=src->height;
    	int width=src->width;	
    
    	//histogram
    	float histogram[256]={0};
    	for(int i=0;i<height;i++) {
    		unsigned char* p=(unsigned char*)src->imageData+src->widthStep*i;
    		for(int j=0;j<width;j++) {
    			histogram[*p++]++;
    		}
    	}
    	//normalize histogram
    	int size=height*width;
    	for(int i=0;i<256;i++) {
    		histogram[i]=histogram[i]/size;
    	}
    
    	//average pixel value
    	float avgValue=0;
    	for(int i=0;i<256;i++) {
    		avgValue+=i*histogram[i];
    	}
    
    	int threshold;	
    	float maxVariance=0;
    	float w=0,u=0;
    	for(int i=0;i<256;i++) {
    		w+=histogram[i];
    		u+=i*histogram[i];
    
    		float t=avgValue*w-u;
    		float variance=t*t/(w*(1-w));
    		if(variance>maxVariance) {
    			maxVariance=variance;
    			threshold=i;
    		}
    	}
    
    	cvThreshold(src,dst,threshold,255,CV_THRESH_BINARY);
    }
    // implementation of otsu algorithm
    // author: onezeros(@yahoo.cn)
    // reference: Rafael C. Gonzalez. Digital Image Processing Using MATLAB
    int cvThresholdOtsu(IplImage* src)
    {
    	int height=src->height;
    	int width=src->width;	
    
    	//histogram
    	float histogram[256]={0};
    	for(int i=0;i<height;i++) {
    		unsigned char* p=(unsigned char*)src->imageData+src->widthStep*i;
    		for(int j=0;j<width;j++) {
    			histogram[*p++]++;
    		}
    	}
    	//normalize histogram
    	int size=height*width;
    	for(int i=0;i<256;i++) {
    		histogram[i]=histogram[i]/size;
    	}
    
    	//average pixel value
    	float avgValue=0;
    	for(int i=0;i<256;i++) {
    		avgValue+=i*histogram[i];
    	}
    
    	int threshold;	
    	float maxVariance=0;
    	float w=0,u=0;
    	for(int i=0;i<256;i++) {
    		w+=histogram[i];
    		u+=i*histogram[i];
    
    		float t=avgValue*w-u;
    		float variance=t*t/(w*(1-w));
    		if(variance>maxVariance) {
    			maxVariance=variance;
    			threshold=i;
    		}
    	}
    
    	return threshold;
    }
    #include <cv.h>
    #include <cxcore.h>
    #include <highgui.h>
    #pragma comment(lib,"cv210d.lib")
    #pragma comment(lib,"cxcore210d.lib")
    #pragma comment(lib,"highgui210d.lib")
    
    #include <iostream>
    using namespace std;
    
    int main()
    {	
    
    
    	int threshold=-1;
    	IplImage* img =cvLoadImage("E:\\test.jpg");
    		cvShowImage("video",img);
    		cvCvtColor(img,img,CV_RGB2YCrCb);
    
    		IplImage* imgCb=cvCreateImage(cvGetSize(img),8,1);
    		cvSplit(img,NULL,NULL,imgCb,NULL);
    		if (threshold<0){
    			threshold=cvThresholdOtsu(imgCb);
    		}
    		//cvThresholdOtsu(imgCb,imgCb);
    		cvThreshold(imgCb,imgCb,threshold,255,CV_THRESH_BINARY);
           cvSaveImage("E:\\imgCb.bmp",imgCb);
    		cvShowImage("object",imgCb);
    		cvReleaseImage(&imgCb);
    	return 0;
    }
    

     迭代阈值分割 mtalab实现:

    %基于贝叶斯分类算法的图像阈值分割 
    clear 
    clc; 
    Init = imread('E:\\test.jpg'); 
    Im=rgb2gray(Init);
    figure(1)
    imhist(Im),title('直方图') ; 
    [x,y]=size(Im);                    % 求出图象大小 
    b=double(Im);                   
    zd=double(max(Im))                  % 求出图象中最大的灰度 
    zx=double(min(Im))                % 最小的灰度  
    T=double((zd+zx))/2;                     % T赋初值,为最大值和最小值的平均值 
    
    count=double(0);                         % 记录几次循环 
    while 1                   % 迭代最佳阈值分割算法 
        count=count+1; 
        S0=0.0; n0=0.0;                   %为计算灰度大于阈值的元素的灰度总值、个数赋值 
        S1=0.0; n1=0.0;                   %为计算灰度小于阈值的元素的灰度总值、个数赋值 
        for i=1:x
            for j=1:y
                if double(Im(i,j))>=T
                    S1=S1+double(Im(i,j));  %大于阈域值图像点灰度值累加
                    n1=n1+1;                %大于阈域值图像点个数累加
                else 
                    S0=S0+double(Im(i,j));  %小于阈域值图像点灰度值累加
                    n0=n0+1;                %小于阀域值图像点个数累加
                end 
            end 
        end  
        T0=S0/n0; %求小于阀域值均值
        T1=S1/n1; %求大于阀域值均值
        if abs(T-((T0+T1)/2))<0.1     %迭代至 前后两次阀域值相差几乎为0时 停止迭代。
            break;
        else
           T=(T0+T1)/2;                 %在阈值T下,迭代阈值的计算过程 
       end 
    end 
    
    count                                %显示运行次数
    T
    i1=im2bw(Im,T/255);               % 图像在最佳阈值下二值化 
    figure(2)
    imshow(i1,'border','tight','InitialMagnification','fit') 
    title('实验结果') ;
    
    

     其他的见下面代码,阈值需要自己测试设定(C++实现):

    *===============================图像分割=====================================*/
    *---------------------------------------------------------------------------*/
    #include <assert.h>
    #include "cv.h"
    #include "highgui.h"
    #include <math.h> 
    #include <iostream>
    using namespace std;
    int HistogramBins = 256;  
    float HistogramRange1[2]={0,255};  
    float *HistogramRange[1]={&HistogramRange1[0]};  
    typedef  
    enum {back,object} entropy_state;  
    *======================================================================*/
    * 迭代法*/
    *======================================================================*/
    // nMaxIter:最大迭代次数;nDiffRec:使用给定阀值确定的亮区与暗区平均灰度差异值
    int DetectThreshold(IplImage*img, int nMaxIter, int& iDiffRec)  //阀值分割:迭代法
    {
    	//图像信息
    	int height = img->height;
    	int width = img->width;
    	int step = img->widthStep/sizeof(uchar);
    	uchar *data = (uchar*)img->imageData;
    
    	iDiffRec =0;
    	int F[256]={ 0 }; //直方图数组
    	int iTotalGray=0;//灰度值和
    	int iTotalPixel =0;//像素数和
    	byte bt;//某点的像素值
    
    	uchar iThrehold,iNewThrehold;//阀值、新阀值
    	uchar iMaxGrayValue=0,iMinGrayValue=255;//原图像中的最大灰度值和最小灰度值
    	uchar iMeanGrayValue1,iMeanGrayValue2;
    
    	//获取(i,j)的值,存于直方图数组F
    	for(int i=0;i<width;i++)
    	{
    		for(int j=0;j<height;j++)
    		{
    			bt = data[i*step+j];
    			if(bt<iMinGrayValue)
    				iMinGrayValue = bt;
    			if(bt>iMaxGrayValue)
    				iMaxGrayValue = bt;
    			F[bt]++;
    		}
    	}
    
    	iThrehold =0;//
    	iNewThrehold = (iMinGrayValue+iMaxGrayValue)/2;//初始阀值
    	iDiffRec = iMaxGrayValue - iMinGrayValue;
    
    	for(int a=0;(abs(iThrehold-iNewThrehold)>0.5)&&a<nMaxIter;a++)//迭代中止条件
    	{
    		iThrehold = iNewThrehold;
    		//小于当前阀值部分的平均灰度值
    		for(int i=iMinGrayValue;i<iThrehold;i++)
    		{
    			iTotalGray += F[i]*i;//F[]存储图像信息
    			iTotalPixel += F[i];
    		}
    		iMeanGrayValue1 = (uchar)(iTotalGray/iTotalPixel);
    		//大于当前阀值部分的平均灰度值
    		iTotalPixel =0;
    		iTotalGray =0;
    		for(int j=iThrehold+1;j<iMaxGrayValue;j++)
    		{
    			iTotalGray += F[j]*j;//F[]存储图像信息
    			iTotalPixel += F[j];    
    		}
    		iMeanGrayValue2 = (uchar)(iTotalGray/iTotalPixel);
    
    		iNewThrehold = (iMeanGrayValue2+iMeanGrayValue1)/2;        //新阀值
    		iDiffRec = abs(iMeanGrayValue2 - iMeanGrayValue1);
    	}
    
    	//cout<<"The Threshold of this Image in imgIteration is:"<<iThrehold<<endl;
    	return iThrehold;
    }
    *======================================================================*/
     /* OTSU global thresholding routine */
     /* takes a 2D unsigned char array pointer, number of rows, and */
     /* number of cols in the array. returns the value of the threshold */
     /*parameter: 
     *image --- buffer for image
     rows, cols --- size of image
     x0, y0, dx, dy --- region of vector used for computing threshold
     vvv --- debug option, is 0, no debug information outputed
     */
     /*
     OTSU 算法可以说是自适应计算单阈值(用来转换灰度图像为二值图像)的简单高效方法。
     下面的代码最早由 Ryan Dibble提供,此后经过多人Joerg.Schulenburg, R.Z.Liu 等修改,补正。
     算法对输入的灰度图像的直方图进行分析,将直方图分成两个部分,使得两部分之间的距离最大。
     划分点就是求得的阈值。
     */
     /*======================================================================*/
     int otsu (unsigned char*image, int rows, int cols, int x0, int y0, int dx, int dy, int vvv)
     {
         
         unsigned char*np; // 图像指针
     int thresholdValue=1; // 阈值
     int ihist[256]; // 图像直方图,256个点
         
     int i, j, k; // various counters
     int n, n1, n2, gmin, gmax;
     double m1, m2, sum, csum, fmax, sb;
         
     // 对直方图置零
         memset(ihist, 0, sizeof(ihist));
         
         gmin=255; gmax=0;
     // 生成直方图
     for (i = y0 +1; i < y0 + dy -1; i++) 
         {
             np = (unsigned char*)image[i*cols+x0+1];
     for (j = x0 +1; j < x0 + dx -1; j++)
             {
                 ihist[*np]++;
     if(*np > gmax) gmax=*np;
     if(*np < gmin) gmin=*np;
                 np++; /* next pixel */
             }
         }
         
     // set up everything
         sum = csum =0.0;
         n =0;
         
     for (k =0; k <=255; k++) 
         {
             sum += (double) k * (double) ihist[k]; /* x*f(x) 质量矩*/
             n += ihist[k]; /* f(x) 质量 */
         }
         
     if (!n) 
         {
     // if n has no value, there is problems...
             fprintf (stderr, "NOT NORMAL thresholdValue = 160\n");
     return (160);
         }
         
     // do the otsu global thresholding method
         fmax =-1.0;
         n1 =0;
     for (k =0; k <255; k++)
         {
             n1 += ihist[k];
     if (!n1) 
             { 
     continue; 
             }
             n2 = n - n1;
     if (n2 ==0)
             { 
     break; 
             }
             csum += (double) k *ihist[k];
             m1 = csum / n1;
             m2 = (sum - csum) / n2;
             sb = (double) n1 *(double) n2 *(m1 - m2) * (m1 - m2);
     /* bbg: note: can be optimized. */
     if (sb > fmax) 
             {
                 fmax = sb;
                 thresholdValue = k;
             }
         }
         
     // at this point we have our thresholding value
         
     // debug code to display thresholding values
     if ( vvv &1 )
             fprintf(stderr,"# OTSU: thresholdValue = %d gmin=%d gmax=%d\n",
             thresholdValue, gmin, gmax);
         
     return(thresholdValue);
     }
     /*======================================================================*/
     /* OTSU global thresholding routine */
     /*======================================================================*/
     int otsu2 (IplImage *image)
     {
    	 int w = image->width;
    	 int h = image->height;
    
    	 unsigned char*np; // 图像指针
    	 unsigned char pixel;
    	 int thresholdValue=1; // 阈值
    	 int ihist[256]; // 图像直方图,256个点
    
    	 int i, j, k; // various counters
    	 int n, n1, n2, gmin, gmax;
    	 double m1, m2, sum, csum, fmax, sb;
    
    	 // 对直方图置零...
    	 memset(ihist, 0, sizeof(ihist));
    
    	 gmin=255; gmax=0;
    	 // 生成直方图
    	 for (i =0; i < h; i++) 
    	 {
    		 np = (unsigned char*)(image->imageData + image->widthStep*i);
    		 for (j =0; j < w; j++) 
    		 {
    			 pixel = np[j];
    			 ihist[ pixel]++;
    			 if(pixel > gmax) gmax= pixel;
    			 if(pixel < gmin) gmin= pixel;
    		 }
    	 }
    
    	 // set up everything
    	 sum = csum =0.0;
    	 n =0;
    
    	 for (k =0; k <=255; k++) 
    	 {
    		 sum += k * ihist[k]; /* x*f(x) 质量矩*/
    		 n += ihist[k]; /* f(x) 质量 */
    	 }
    
    	 if (!n) 
    	 {
    		 // if n has no value, there is problems...
    		 //fprintf (stderr, "NOT NORMAL thresholdValue = 160\n");
    		 thresholdValue =160;
    		 goto L;
    	 }
    
    	 // do the otsu global thresholding method
    	 fmax =-1.0;
    	 n1 =0;
    	 for (k =0; k <255; k++) 
    	 {
    		 n1 += ihist[k];
    		 if (!n1) { continue; }
    		 n2 = n - n1;
    		 if (n2 ==0) { break; }
    		 csum += k *ihist[k];
    		 m1 = csum / n1;
    		 m2 = (sum - csum) / n2;
    		 sb = n1 * n2 *(m1 - m2) * (m1 - m2);
    		 /* bbg: note: can be optimized. */
    		 if (sb > fmax)
    		 {
    			 fmax = sb;
    			 thresholdValue = k;
    		 }
    	 }
    
    L:
    	 for (i =0; i < h; i++) 
    	 {
    		 np = (unsigned char*)(image->imageData + image->widthStep*i);
    		 for (j =0; j < w; j++) 
    		 {
    			 if(np[j] >= thresholdValue)
    				 np[j] =255;
    			 else np[j] =0;
    		 }
    	 }
    
    	 //cout<<"The Threshold of this Image in Otsu is:"<<thresholdValue<<endl;
    	 return(thresholdValue);
     }
     /*============================================================================
     =  代码内容:最大熵阈值分割                                      
     =  修改日期:2009-3-3                                                                                                         
     =  作者:crond123 
     =  博客:http://blog.csdn.net/crond123/
     =  E_Mail:crond123@163.com                                                      
     ===============================================================================*/
     // 计算当前位置的能量熵
     double caculateCurrentEntropy(CvHistogram * Histogram1,int cur_threshold,entropy_state state)
     {
     int start,end;
     int  total =0;
     double cur_entropy =0.0;
     if(state == back)    
         {
             start =0;
             end = cur_threshold;    
         }
     else    
         {
             start = cur_threshold;
             end =256;    
         }    
     for(int i=start;i<end;i++)    
         {
             total += (int)cvQueryHistValue_1D(Histogram1,i);//查询直方块的值 P304
         }
     for(int j=start;j<end;j++)
         {
     if((int)cvQueryHistValue_1D(Histogram1,j)==0)
     continue;
     double percentage = cvQueryHistValue_1D(Histogram1,j)/total;
     /*熵的定义公式*/
             cur_entropy +=-percentage*logf(percentage);
     /*根据泰勒展式去掉高次项得到的熵的近似计算公式
             cur_entropy += percentage*percentage;*/        
         }
     return cur_entropy;
     //    return (1-cur_entropy);
     }
     
     //寻找最大熵阈值并分割
     void  MaxEntropy(IplImage *src,IplImage *dst)
     {
         assert(src != NULL);
         assert(src->depth ==8&& dst->depth ==8);
         assert(src->nChannels ==1);
         CvHistogram * hist  = cvCreateHist(1,&HistogramBins,CV_HIST_ARRAY,HistogramRange);//创建一个指定尺寸的直方图
     //参数含义:直方图包含的维数、直方图维数尺寸的数组、直方图的表示格式、方块范围数组、归一化标志
         cvCalcHist(&src,hist);//计算直方图
     double maxentropy =-1.0;
     int max_index =-1;
     // 循环测试每个分割点,寻找到最大的阈值分割点
     for(int i=0;i<HistogramBins;i++)    
         {
     double cur_entropy = caculateCurrentEntropy(hist,i,object)+caculateCurrentEntropy(hist,i,back);
     if(cur_entropy>maxentropy)
             {
                 maxentropy = cur_entropy;
                 max_index = i;
             }
         }
         cout<<"The Threshold of this Image in MaxEntropy is:"<<max_index<<endl;
         cvThreshold(src, dst, (double)max_index,255, CV_THRESH_BINARY);
         cvReleaseHist(&hist);
     }
     /*============================================================================
     =  代码内容:基本全局阈值法                              
     ==============================================================================*/
     int BasicGlobalThreshold(int*pg,int start,int end)
     {                                           //  基本全局阈值法
     int  i,t,t1,t2,k1,k2;
     double u,u1,u2;    
         t=0;     
         u=0;
     for (i=start;i<end;i++) 
         {
             t+=pg[i];        
             u+=i*pg[i];
         }
         k2=(int) (u/t);                          //  计算此范围灰度的平均值    
     do 
         {
             k1=k2;
             t1=0;    
             u1=0;
     for (i=start;i<=k1;i++) 
             {             //  计算低灰度组的累加和
                 t1+=pg[i];    
                 u1+=i*pg[i];
             }
             t2=t-t1;
             u2=u-u1;
     if (t1) 
                 u1=u1/t1;                     //  计算低灰度组的平均值
     else 
                 u1=0;
     if (t2) 
                 u2=u2/t2;                     //  计算高灰度组的平均值
     else 
                 u2=0;
             k2=(int) ((u1+u2)/2);                 //  得到新的阈值估计值
         }
     while(k1!=k2);                           //  数据未稳定,继续
     //cout<<"The Threshold of this Image in BasicGlobalThreshold is:"<<k1<<endl;
     return(k1);                              //  返回阈值
     }
    int main()
    {
    	/*手动设置阀值*/
    	IplImage* smoothImgGauss = cvLoadImage("E:\\test.jpg", CV_LOAD_IMAGE_GRAYSCALE);
    	IplImage* imgGrey = cvCreateImage(cvGetSize(smoothImgGauss),IPL_DEPTH_8U, 1);
    	int w = smoothImgGauss->width, h = smoothImgGauss->height;
    	IplImage* binaryImg = cvCreateImage(cvGetSize(smoothImgGauss),IPL_DEPTH_8U, 1);
    	cvThreshold(smoothImgGauss,binaryImg,71,255,CV_THRESH_BINARY); 
    	//cvNamedWindow("cvThreshold", CV_WINDOW_AUTOSIZE );
    	//cvShowImage( "cvThreshold", binaryImg );
    	cvSaveImage("E:\\手动设置阀值.bmp",binaryImg);
    	cvReleaseImage(&binaryImg);    
    	/*---------------------------------------------------------------------------*/
    	/*自适应阀值  //计算像域邻域的平均灰度,来决定二值化的值*/
    	IplImage* adThresImg = cvCreateImage(cvGetSize(smoothImgGauss),IPL_DEPTH_8U, 1);
    	double max_value=255;
    	int adpative_method=CV_ADAPTIVE_THRESH_GAUSSIAN_C;//CV_ADAPTIVE_THRESH_MEAN_C
    	int threshold_type=CV_THRESH_BINARY;
    	int block_size=3;//阈值的象素邻域大小
    	int offset=5;//窗口尺寸
    	cvAdaptiveThreshold(smoothImgGauss,adThresImg,max_value,adpative_method,threshold_type,block_size,offset);
    	//cvNamedWindow("cvAdaptiveThreshold", CV_WINDOW_AUTOSIZE );
    	cvSaveImage("E:\\自适应阀值.bmp",adThresImg);
    	//cvShowImage( "cvAdaptiveThreshold", adThresImg );
    	cvReleaseImage(&adThresImg);
    
    	/*---------------------------------------------------------------------------*/
    	/*最大熵阀值分割法*/    
    	IplImage* imgMaxEntropy = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
    	MaxEntropy(smoothImgGauss,imgMaxEntropy);
    	//cvNamedWindow("MaxEntroyThreshold", CV_WINDOW_AUTOSIZE );
    	//cvShowImage( "MaxEntroyThreshold", imgMaxEntropy );//显示图像
    	cvSaveImage("E:\\最大熵阀值分割.bmp",imgMaxEntropy);
    	cvReleaseImage(&imgMaxEntropy ); 
    	
    	/*---------------------------------------------------------------------------*/
    	/*基本全局阀值法*/
    	IplImage* imgBasicGlobalThreshold = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
    	IplImage* srcImgGrey = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
    	cvCopyImage(srcImgGrey,imgBasicGlobalThreshold);
    	int  pg[256],i,thre;    
    	for (i=0;i<256;i++) pg[i]=0;
    	for (i=0;i<imgBasicGlobalThreshold->imageSize;i++)      //  直方图统计
    		pg[(BYTE)imgBasicGlobalThreshold->imageData[i]]++;    
    	thre = BasicGlobalThreshold(pg,0,256);    //  确定阈值
    	cout<<"The Threshold of this Image in BasicGlobalThreshold is:"<<thre<<endl;//输出显示阀值
    	cvThreshold(imgBasicGlobalThreshold,imgBasicGlobalThreshold,thre,200,CV_THRESH_BINARY);  //  二值化    
    	//cvNamedWindow("BasicGlobalThreshold", CV_WINDOW_AUTOSIZE );
    	//cvShowImage( "BasicGlobalThreshold", imgBasicGlobalThreshold);//显示图像
        cvSaveImage("E:\\基本全局阀值法.bmp",imgBasicGlobalThreshold);
    	cvReleaseImage(&imgBasicGlobalThreshold);
    	/*---------------------------------------------------------------------------*/
    	/*OTSU*/
    	IplImage* imgOtsu = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
    	cvCopyImage(srcImgGrey,imgOtsu);
    	int thre2;
    	thre2 = otsu2(imgOtsu);
    	cout<<"The Threshold of this Image in Otsu is:"<<thre2<<endl;//输出显示阀值
    	cvThreshold(imgOtsu,imgOtsu,thre2,200,CV_THRESH_BINARY);  //  二值化    
    	//cvNamedWindow("imgOtsu", CV_WINDOW_AUTOSIZE );
    	//cvShowImage( "imgOtsu", imgOtsu);//显示图像    
    	cvSaveImage("E:\\OTSU.bmp",imgOtsu);
    	cvReleaseImage(&imgOtsu);
    	/*---------------------------------------------------------------------------*/
    	/*上下阀值法:利用正态分布求可信区间*/
    	IplImage* imgTopDown = cvCreateImage( cvGetSize(imgGrey), IPL_DEPTH_8U, 1 );
    	cvCopyImage(srcImgGrey,imgTopDown);
    	CvScalar mean ,std_dev;//平均值、 标准差
    	double u_threshold,d_threshold;
    	cvAvgSdv(imgTopDown,&mean,&std_dev,NULL);    
    	u_threshold = mean.val[0] +2.5* std_dev.val[0];//上阀值
    	d_threshold = mean.val[0] -2.5* std_dev.val[0];//下阀值
    	//u_threshold = mean + 2.5 * std_dev; //错误
    	//d_threshold = mean - 2.5 * std_dev;
    	cout<<"The TopThreshold of this Image in TopDown is:"<<d_threshold<<endl;//输出显示阀值
    	cout<<"The DownThreshold of this Image in TopDown is:"<<u_threshold<<endl;
    	cvThreshold(imgTopDown,imgTopDown,d_threshold,u_threshold,CV_THRESH_BINARY_INV);//上下阀值
    	//cvNamedWindow("imgTopDown", CV_WINDOW_AUTOSIZE );
    	//cvShowImage( "imgTopDown", imgTopDown);//显示图像  
    	cvSaveImage("E:\\上下阀值法.bmp",imgTopDown);
    	cvReleaseImage(&imgTopDown);
    }
    

     再次,全局阈值分割C++:

    /************************************************************************/
    /* 全局阈值分割  自动求取阈值        */
    /************************************************************************/
    //自动求取阈值,增加对场景的适应性
    //只需求取一次,之后就可以一直使用
    #include<cv.h>
    #include <highgui.h>
    #include <iostream>
    #include <math.h>
    using namespace std;
    int main(){
    	IplImage * image,* image2;
    	image = cvLoadImage("E:\\111.jpg",0);
    	cvNamedWindow("image",1);
    	cvShowImage("image",image);
    	image2 = cvCreateImage(cvSize(image->width,image->height),image->depth,1);
    	double T = 0;
    	double dT0 = 1.0;//阈值求取结束标志
    	double dT = 255.0;
    
    	//求取平均灰度,作为阈值T的初始值T0
    	int i, j;
    	double T0 = 0,T1 = 0,T2 = 0;//初始阈值
    	int count1,count2;
    	unsigned char * ptr,*dst;
    	for (i = 0 ; i< image->height ; i++)
    	{
    		for (j =0 ; j < image->width;j++)
    		{
    			ptr = (unsigned char *)image->imageData + i*image->widthStep + j;
    			T0 += ((double)(*ptr))/image->width/image->height;
    		}
    	}
    	cout<<"T0:     "<<T0<<endl;
    	T = (int)(T0 + 0.5); 
    	//计算T两侧的灰度平均值,然后把二者的均值赋值给T
    	while (dT > dT0)
    	{
    
    		T1 = 0;
    		T2 = 0;
    		count1 = 0;
    		count2 = 0;
    		for (i = 0 ; i< image->height ; i++)
    		{
    			for (j =0 ; j < image->width;j++)
    			{
    				ptr = (unsigned char *)image->imageData + i*image->widthStep + j;
    				if (*ptr > T)
    				{
    					T1 += ((double)(*ptr))/image->width/image->height;
    					count1++;
    				} 
    				else if(*ptr < T)
    				{
    					T2 +=  ((double)(*ptr))/image->width/image->height;
    					count2++;
    				}
    			}
    		}
    
    		T1 = T1*image->width*image->height/count1;
    		T2 = T2*image->width*image->height/count2;
    		dT = fabs(T - (T1 + T2)/2);
    
    		cout<<"T1"<<T1<<endl;
    		cout<<"T2"<<T2<<endl;
    		cout<<"dT  " << dT<<endl;
    		T = (T1 + T2)/2;
    		cout<<"T:     "<<T<<endl;
    	}
    
    
    
    	//根据求取的阈值进行分割
    	for (i = 0 ; i< image2->height ; i++)
    	{
    		for (j =0 ; j < image2->width;j++)
    		{
    			ptr = (unsigned char *)image->imageData + i*image->widthStep + j;
    			dst = (unsigned char *)image2->imageData+i*image2->widthStep+j;
    			if (*ptr > T)
    			{
    				*dst = 255;
    			} 
    			else
    			{
    				*dst =0;
    			}
    		}
    	}
    
    	cvNamedWindow("image2",1);
    	cvShowImage("image2",image2);
    	cvSaveImage("E:\\image\\dowels2.tif",image2);
    	cvWaitKey(0);
    	return 0;
    }
    
  • 相关阅读:
    令人恼怒!mount windows共享目录出错
    今天修改PCB板图
    在深圳出差
    触摸屏技术原理介绍
    getrlimit和setrlimit函数
    OpenCV下的HelloWorld
    两本OpenCV的书到了
    GDB用法小结
    没搞懂自适应二进制阈值化的参数
    【JavaScript】73 逆序的三位数 (10分)
  • 原文地址:https://www.cnblogs.com/xiangshancuizhu/p/2384197.html
Copyright © 2011-2022 走看看