zoukankan      html  css  js  c++  java
  • libev代码

    就是贴上来:

    ev.c:

    /*
     * libev event processing core, watcher management
     */
    
    /* this big block deduces configuration from config.h */
    #ifndef EV_STANDALONE
    # ifdef EV_CONFIG_H
    #  include EV_CONFIG_H
    # else
    #  include "config.h"
    # endif
    
    #if HAVE_FLOOR
    # ifndef EV_USE_FLOOR
    #  define EV_USE_FLOOR 1
    # endif
    #endif
    
    # if HAVE_CLOCK_SYSCALL
    #  ifndef EV_USE_CLOCK_SYSCALL
    #   define EV_USE_CLOCK_SYSCALL 1
    #   ifndef EV_USE_REALTIME
    #    define EV_USE_REALTIME  0
    #   endif
    #   ifndef EV_USE_MONOTONIC
    #    define EV_USE_MONOTONIC 1
    #   endif
    #  endif
    # elif !defined EV_USE_CLOCK_SYSCALL
    #  define EV_USE_CLOCK_SYSCALL 0
    # endif
    
    # if HAVE_CLOCK_GETTIME
    #  ifndef EV_USE_MONOTONIC
    #   define EV_USE_MONOTONIC 1
    #  endif
    #  ifndef EV_USE_REALTIME
    #   define EV_USE_REALTIME  0
    #  endif
    # else
    #  ifndef EV_USE_MONOTONIC
    #   define EV_USE_MONOTONIC 0
    #  endif
    #  ifndef EV_USE_REALTIME
    #   define EV_USE_REALTIME  0
    #  endif
    # endif
    
    # if HAVE_NANOSLEEP
    #  ifndef EV_USE_NANOSLEEP
    #    define EV_USE_NANOSLEEP EV_FEATURE_OS
    #  endif
    # else
    #   undef EV_USE_NANOSLEEP
    #   define EV_USE_NANOSLEEP 0
    # endif
    
    # if HAVE_SELECT && HAVE_SYS_SELECT_H
    #  ifndef EV_USE_SELECT
    #   define EV_USE_SELECT EV_FEATURE_BACKENDS
    #  endif
    # else
    #  undef EV_USE_SELECT
    #  define EV_USE_SELECT 0
    # endif
    
    # if HAVE_POLL && HAVE_POLL_H
    #  ifndef EV_USE_POLL
    #   define EV_USE_POLL EV_FEATURE_BACKENDS
    #  endif
    # else
    #  undef EV_USE_POLL
    #  define EV_USE_POLL 0
    # endif
       
    # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
    #  ifndef EV_USE_EPOLL
    #   define EV_USE_EPOLL EV_FEATURE_BACKENDS
    #  endif
    # else
    #  undef EV_USE_EPOLL
    #  define EV_USE_EPOLL 0
    # endif
       
    # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
    #  ifndef EV_USE_KQUEUE
    #   define EV_USE_KQUEUE EV_FEATURE_BACKENDS
    #  endif
    # else
    #  undef EV_USE_KQUEUE
    #  define EV_USE_KQUEUE 0
    # endif
       
    # if HAVE_PORT_H && HAVE_PORT_CREATE
    #  ifndef EV_USE_PORT
    #   define EV_USE_PORT EV_FEATURE_BACKENDS
    #  endif
    # else
    #  undef EV_USE_PORT
    #  define EV_USE_PORT 0
    # endif
    
    # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
    #  ifndef EV_USE_INOTIFY
    #   define EV_USE_INOTIFY EV_FEATURE_OS
    #  endif
    # else
    #  undef EV_USE_INOTIFY
    #  define EV_USE_INOTIFY 0
    # endif
    
    # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
    #  ifndef EV_USE_SIGNALFD
    #   define EV_USE_SIGNALFD EV_FEATURE_OS
    #  endif
    # else
    #  undef EV_USE_SIGNALFD
    #  define EV_USE_SIGNALFD 0
    # endif
    
    # if HAVE_EVENTFD
    #  ifndef EV_USE_EVENTFD
    #   define EV_USE_EVENTFD EV_FEATURE_OS
    #  endif
    # else
    #  undef EV_USE_EVENTFD
    #  define EV_USE_EVENTFD 0
    # endif
     
    #endif
    
    #include <stdlib.h>
    #include <string.h>
    #include <fcntl.h>
    #include <stddef.h>
    
    #include <stdio.h>
    
    #include <assert.h>
    #include <errno.h>
    #include <sys/types.h>
    #include <time.h>
    #include <limits.h>
    
    #include <signal.h>
    
    #ifdef EV_H
    # include EV_H
    #else
    # include "ev.h"
    #endif
    
    #if EV_NO_THREADS
    # undef EV_NO_SMP
    # define EV_NO_SMP 1
    # undef ECB_NO_THREADS
    # define ECB_NO_THREADS 1
    #endif
    #if EV_NO_SMP
    # undef EV_NO_SMP
    # define ECB_NO_SMP 1
    #endif
    
    #ifndef _WIN32
    # include <sys/time.h>
    # include <sys/wait.h>
    # include <unistd.h>
    #else
    # include <io.h>
    # define WIN32_LEAN_AND_MEAN
    # include <winsock2.h>
    # include <windows.h>
    # ifndef EV_SELECT_IS_WINSOCKET
    #  define EV_SELECT_IS_WINSOCKET 1
    # endif
    # undef EV_AVOID_STDIO
    #endif
    
    /* OS X, in its infinite idiocy, actually HARDCODES
     * a limit of 1024 into their select. Where people have brains,
     * OS X engineers apparently have a vacuum. Or maybe they were
     * ordered to have a vacuum, or they do anything for money.
     * This might help. Or not.
     */
    #define _DARWIN_UNLIMITED_SELECT 1
    
    /* this block tries to deduce configuration from header-defined symbols and defaults */
    
    /* try to deduce the maximum number of signals on this platform */
    #if defined EV_NSIG
    /* use what's provided */
    #elif defined NSIG
    # define EV_NSIG (NSIG)
    #elif defined _NSIG
    # define EV_NSIG (_NSIG)
    #elif defined SIGMAX
    # define EV_NSIG (SIGMAX+1)
    #elif defined SIG_MAX
    # define EV_NSIG (SIG_MAX+1)
    #elif defined _SIG_MAX
    # define EV_NSIG (_SIG_MAX+1)
    #elif defined MAXSIG
    # define EV_NSIG (MAXSIG+1)
    #elif defined MAX_SIG
    # define EV_NSIG (MAX_SIG+1)
    #elif defined SIGARRAYSIZE
    # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
    #elif defined _sys_nsig
    # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
    #else
    # error "unable to find value for NSIG, please report"
    /* to make it compile regardless, just remove the above line, */
    /* but consider reporting it, too! :) */
    # define EV_NSIG 65
    #endif
    
    #ifndef EV_USE_FLOOR
    # define EV_USE_FLOOR 0
    #endif
    
    #ifndef EV_USE_CLOCK_SYSCALL
    # if __linux && __GLIBC__ >= 2
    #  define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
    # else
    #  define EV_USE_CLOCK_SYSCALL 0
    # endif
    #endif
    
    #ifndef EV_USE_MONOTONIC
    # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
    #  define EV_USE_MONOTONIC EV_FEATURE_OS
    # else
    #  define EV_USE_MONOTONIC 0
    # endif
    #endif
    
    #ifndef EV_USE_REALTIME
    # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
    #endif
    
    #ifndef EV_USE_NANOSLEEP
    # if _POSIX_C_SOURCE >= 199309L
    #  define EV_USE_NANOSLEEP EV_FEATURE_OS
    # else
    #  define EV_USE_NANOSLEEP 0
    # endif
    #endif
    
    #ifndef EV_USE_SELECT
    # define EV_USE_SELECT EV_FEATURE_BACKENDS
    #endif
    
    #ifndef EV_USE_POLL
    # ifdef _WIN32
    #  define EV_USE_POLL 0
    # else
    #  define EV_USE_POLL EV_FEATURE_BACKENDS
    # endif
    #endif
    
    #ifndef EV_USE_EPOLL
    # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
    #  define EV_USE_EPOLL EV_FEATURE_BACKENDS
    # else
    #  define EV_USE_EPOLL 0
    # endif
    #endif
    
    #ifndef EV_USE_KQUEUE
    # define EV_USE_KQUEUE 0
    #endif
    
    #ifndef EV_USE_PORT
    # define EV_USE_PORT 0
    #endif
    
    #ifndef EV_USE_INOTIFY
    # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
    #  define EV_USE_INOTIFY EV_FEATURE_OS
    # else
    #  define EV_USE_INOTIFY 0
    # endif
    #endif
    
    #ifndef EV_PID_HASHSIZE
    # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
    #endif
    
    #ifndef EV_INOTIFY_HASHSIZE
    # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
    #endif
    
    #ifndef EV_USE_EVENTFD
    # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
    #  define EV_USE_EVENTFD EV_FEATURE_OS
    # else
    #  define EV_USE_EVENTFD 0
    # endif
    #endif
    
    #ifndef EV_USE_SIGNALFD
    # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
    #  define EV_USE_SIGNALFD EV_FEATURE_OS
    # else
    #  define EV_USE_SIGNALFD 0
    # endif
    #endif
    
    #if 0 /* debugging */
    # define EV_VERIFY 3
    # define EV_USE_4HEAP 1
    # define EV_HEAP_CACHE_AT 1
    #endif
    
    #ifndef EV_VERIFY
    # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
    #endif
    
    #ifndef EV_USE_4HEAP
    # define EV_USE_4HEAP EV_FEATURE_DATA
    #endif
    
    #ifndef EV_HEAP_CACHE_AT
    # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
    #endif
    
    #ifdef ANDROID
    /* supposedly, android doesn't typedef fd_mask */
    # undef EV_USE_SELECT
    # define EV_USE_SELECT 0
    /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
    # undef EV_USE_CLOCK_SYSCALL
    # define EV_USE_CLOCK_SYSCALL 0
    #endif
    
    /* aix's poll.h seems to cause lots of trouble */
    #ifdef _AIX
    /* AIX has a completely broken poll.h header */
    # undef EV_USE_POLL
    # define EV_USE_POLL 0
    #endif
    
    /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
    /* which makes programs even slower. might work on other unices, too. */
    #if EV_USE_CLOCK_SYSCALL
    # include <sys/syscall.h>
    # ifdef SYS_clock_gettime
    #  define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
    #  undef EV_USE_MONOTONIC
    #  define EV_USE_MONOTONIC 1
    # else
    #  undef EV_USE_CLOCK_SYSCALL
    #  define EV_USE_CLOCK_SYSCALL 0
    # endif
    #endif
    
    /* this block fixes any misconfiguration where we know we run into trouble otherwise */
    
    #ifndef CLOCK_MONOTONIC
    # undef EV_USE_MONOTONIC
    # define EV_USE_MONOTONIC 0
    #endif
    
    #ifndef CLOCK_REALTIME
    # undef EV_USE_REALTIME
    # define EV_USE_REALTIME 0
    #endif
    
    #if !EV_STAT_ENABLE
    # undef EV_USE_INOTIFY
    # define EV_USE_INOTIFY 0
    #endif
    
    #if !EV_USE_NANOSLEEP
    /* hp-ux has it in sys/time.h, which we unconditionally include above */
    # if !defined _WIN32 && !defined __hpux
    #  include <sys/select.h>
    # endif
    #endif
    
    #if EV_USE_INOTIFY
    # include <sys/statfs.h>
    # include <sys/inotify.h>
    /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
    # ifndef IN_DONT_FOLLOW
    #  undef EV_USE_INOTIFY
    #  define EV_USE_INOTIFY 0
    # endif
    #endif
    
    #if EV_USE_EVENTFD
    /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
    # include <stdint.h>
    # ifndef EFD_NONBLOCK
    #  define EFD_NONBLOCK O_NONBLOCK
    # endif
    # ifndef EFD_CLOEXEC
    #  ifdef O_CLOEXEC
    #   define EFD_CLOEXEC O_CLOEXEC
    #  else
    #   define EFD_CLOEXEC 02000000
    #  endif
    # endif
    EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
    #endif
    
    #if EV_USE_SIGNALFD
    /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
    # include <stdint.h>
    # ifndef SFD_NONBLOCK
    #  define SFD_NONBLOCK O_NONBLOCK
    # endif
    # ifndef SFD_CLOEXEC
    #  ifdef O_CLOEXEC
    #   define SFD_CLOEXEC O_CLOEXEC
    #  else
    #   define SFD_CLOEXEC 02000000
    #  endif
    # endif
    EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
    
    struct signalfd_siginfo
    {
      uint32_t ssi_signo;
      char pad[128 - sizeof (uint32_t)];
    };
    #endif
    
    /**/
    
    #if EV_VERIFY >= 3
    # define EV_FREQUENT_CHECK ev_verify (EV_A)
    #else
    # define EV_FREQUENT_CHECK do { } while (0)
    #endif
    
    /*
     * This is used to work around floating point rounding problems.
     * This value is good at least till the year 4000.
     */
    #define MIN_INTERVAL  0.0001220703125 /* 1/2**13, good till 4000 */
    /*#define MIN_INTERVAL  0.00000095367431640625 /* 1/2**20, good till 2200 */
    
    #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
    #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
    
    #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
    #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
    
    /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
    /* ECB.H BEGIN */
    /*
     * libecb - http://software.schmorp.de/pkg/libecb
     *
     * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
     * Copyright (©) 2011 Emanuele Giaquinta
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without modifica-
     * tion, are permitted provided that the following conditions are met:
     *
     *   1.  Redistributions of source code must retain the above copyright notice,
     *       this list of conditions and the following disclaimer.
     *
     *   2.  Redistributions in binary form must reproduce the above copyright
     *       notice, this list of conditions and the following disclaimer in the
     *       documentation and/or other materials provided with the distribution.
     *
     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     * OF THE POSSIBILITY OF SUCH DAMAGE.
     */
    
    #ifndef ECB_H
    #define ECB_H
    
    /* 16 bits major, 16 bits minor */
    #define ECB_VERSION 0x00010003
    
    #ifdef _WIN32
      typedef   signed char   int8_t;
      typedef unsigned char  uint8_t;
      typedef   signed short  int16_t;
      typedef unsigned short uint16_t;
      typedef   signed int    int32_t;
      typedef unsigned int   uint32_t;
      #if __GNUC__
        typedef   signed long long int64_t;
        typedef unsigned long long uint64_t;
      #else /* _MSC_VER || __BORLANDC__ */
        typedef   signed __int64   int64_t;
        typedef unsigned __int64   uint64_t;
      #endif
      #ifdef _WIN64
        #define ECB_PTRSIZE 8
        typedef uint64_t uintptr_t;
        typedef  int64_t  intptr_t;
      #else
        #define ECB_PTRSIZE 4
        typedef uint32_t uintptr_t;
        typedef  int32_t  intptr_t;
      #endif
    #else
      #include <inttypes.h>
      #if UINTMAX_MAX > 0xffffffffU
        #define ECB_PTRSIZE 8
      #else
        #define ECB_PTRSIZE 4
      #endif
    #endif
    
    /* work around x32 idiocy by defining proper macros */
    #if __x86_64 || _M_AMD64
      #if __ILP32
        #define ECB_AMD64_X32 1
      #else
        #define ECB_AMD64 1
      #endif
    #endif
    
    /* many compilers define _GNUC_ to some versions but then only implement
     * what their idiot authors think are the "more important" extensions,
     * causing enormous grief in return for some better fake benchmark numbers.
     * or so.
     * we try to detect these and simply assume they are not gcc - if they have
     * an issue with that they should have done it right in the first place.
     */
    #ifndef ECB_GCC_VERSION
      #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
        #define ECB_GCC_VERSION(major,minor) 0
      #else
        #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
      #endif
    #endif
    
    #define ECB_C     (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
    #define ECB_C99   (__STDC_VERSION__ >= 199901L)
    #define ECB_C11   (__STDC_VERSION__ >= 201112L)
    #define ECB_CPP   (__cplusplus+0)
    #define ECB_CPP11 (__cplusplus >= 201103L)
    
    #if ECB_CPP
      #define ECB_EXTERN_C extern "C"
      #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
      #define ECB_EXTERN_C_END }
    #else
      #define ECB_EXTERN_C extern
      #define ECB_EXTERN_C_BEG
      #define ECB_EXTERN_C_END
    #endif
    
    /*****************************************************************************/
    
    /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
    /* ECB_NO_SMP     - ecb might be used in multiple threads, but only on a single cpu */
    
    #if ECB_NO_THREADS
      #define ECB_NO_SMP 1
    #endif
    
    #if ECB_NO_SMP
      #define ECB_MEMORY_FENCE do { } while (0)
    #endif
    
    #ifndef ECB_MEMORY_FENCE
      #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
        #if __i386 || __i386__
          #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
          #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""                        : : : "memory")
          #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
        #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
          #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mfence"   : : : "memory")
          #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""         : : : "memory")
          #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
        #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
          #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("sync"     : : : "memory")
        #elif defined __ARM_ARCH_6__  || defined __ARM_ARCH_6J__  
           || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
          #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
        #elif defined __ARM_ARCH_7__  || defined __ARM_ARCH_7A__  
           || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
          #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("dmb"      : : : "memory")
        #elif __sparc || __sparc__
          #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
          #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad"                            : : : "memory")
          #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore             | #StoreStore")
        #elif defined __s390__ || defined __s390x__
          #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("bcr 15,0" : : : "memory")
        #elif defined __mips__
          #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("sync"     : : : "memory")
        #elif defined __alpha__
          #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mb"       : : : "memory")
        #elif defined __hppa__
          #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
          #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
        #elif defined __ia64__
          #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mf"       : : : "memory")
        #endif
      #endif
    #endif
    
    #ifndef ECB_MEMORY_FENCE
      #if ECB_GCC_VERSION(4,7)
        /* see comment below (stdatomic.h) about the C11 memory model. */
        #define ECB_MEMORY_FENCE         __atomic_thread_fence (__ATOMIC_SEQ_CST)
    
      /* The __has_feature syntax from clang is so misdesigned that we cannot use it
       * without risking compile time errors with other compilers. We *could*
       * define our own ecb_clang_has_feature, but I just can't be bothered to work
       * around this shit time and again.
       * #elif defined __clang && __has_feature (cxx_atomic)
       *   // see comment below (stdatomic.h) about the C11 memory model.
       *   #define ECB_MEMORY_FENCE         __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
       */
    
      #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
        #define ECB_MEMORY_FENCE         __sync_synchronize ()
      #elif _MSC_VER >= 1400 /* VC++ 2005 */
        #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
        #define ECB_MEMORY_FENCE         _ReadWriteBarrier ()
        #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
        #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
      #elif defined _WIN32
        #include <WinNT.h>
        #define ECB_MEMORY_FENCE         MemoryBarrier () /* actually just xchg on x86... scary */
      #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
        #include <mbarrier.h>
        #define ECB_MEMORY_FENCE         __machine_rw_barrier ()
        #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier  ()
        #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier  ()
      #elif __xlC__
        #define ECB_MEMORY_FENCE         __sync ()
      #endif
    #endif
    
    #ifndef ECB_MEMORY_FENCE
      #if ECB_C11 && !defined __STDC_NO_ATOMICS__
        /* we assume that these memory fences work on all variables/all memory accesses, */
        /* not just C11 atomics and atomic accesses */
        #include <stdatomic.h>
        /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
        /* any fence other than seq_cst, which isn't very efficient for us. */
        /* Why that is, we don't know - either the C11 memory model is quite useless */
        /* for most usages, or gcc and clang have a bug */
        /* I *currently* lean towards the latter, and inefficiently implement */
        /* all three of ecb's fences as a seq_cst fence */
        #define ECB_MEMORY_FENCE         atomic_thread_fence (memory_order_seq_cst)
      #endif
    #endif
    
    #ifndef ECB_MEMORY_FENCE
      #if !ECB_AVOID_PTHREADS
        /*
         * if you get undefined symbol references to pthread_mutex_lock,
         * or failure to find pthread.h, then you should implement
         * the ECB_MEMORY_FENCE operations for your cpu/compiler
         * OR provide pthread.h and link against the posix thread library
         * of your system.
         */
        #include <pthread.h>
        #define ECB_NEEDS_PTHREADS 1
        #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
    
        static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
        #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
      #endif
    #endif
    
    #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
      #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
    #endif
    
    #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
      #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
    #endif
    
    /*****************************************************************************/
    
    #if __cplusplus
      #define ecb_inline static inline
    #elif ECB_GCC_VERSION(2,5)
      #define ecb_inline static __inline__
    #elif ECB_C99
      #define ecb_inline static inline
    #else
      #define ecb_inline static
    #endif
    
    #if ECB_GCC_VERSION(3,3)
      #define ecb_restrict __restrict__
    #elif ECB_C99
      #define ecb_restrict restrict
    #else
      #define ecb_restrict
    #endif
    
    typedef int ecb_bool;
    
    #define ECB_CONCAT_(a, b) a ## b
    #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
    #define ECB_STRINGIFY_(a) # a
    #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
    
    #define ecb_function_ ecb_inline
    
    #if ECB_GCC_VERSION(3,1)
      #define ecb_attribute(attrlist)        __attribute__(attrlist)
      #define ecb_is_constant(expr)          __builtin_constant_p (expr)
      #define ecb_expect(expr,value)         __builtin_expect ((expr),(value))
      #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
    #else
      #define ecb_attribute(attrlist)
      #define ecb_is_constant(expr)          0
      #define ecb_expect(expr,value)         (expr)
      #define ecb_prefetch(addr,rw,locality)
    #endif
    
    /* no emulation for ecb_decltype */
    #if ECB_GCC_VERSION(4,5)
      #define ecb_decltype(x) __decltype(x)
    #elif ECB_GCC_VERSION(3,0)
      #define ecb_decltype(x) __typeof(x)
    #endif
    
    #define ecb_noinline   ecb_attribute ((__noinline__))
    #define ecb_unused     ecb_attribute ((__unused__))
    #define ecb_const      ecb_attribute ((__const__))
    #define ecb_pure       ecb_attribute ((__pure__))
    
    #if ECB_C11
      #define ecb_noreturn   _Noreturn
    #else
      #define ecb_noreturn   ecb_attribute ((__noreturn__))
    #endif
    
    #if ECB_GCC_VERSION(4,3)
      #define ecb_artificial ecb_attribute ((__artificial__))
      #define ecb_hot        ecb_attribute ((__hot__))
      #define ecb_cold       ecb_attribute ((__cold__))
    #else
      #define ecb_artificial
      #define ecb_hot
      #define ecb_cold
    #endif
    
    /* put around conditional expressions if you are very sure that the  */
    /* expression is mostly true or mostly false. note that these return */
    /* booleans, not the expression.                                     */
    #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
    #define ecb_expect_true(expr)  ecb_expect (!!(expr), 1)
    /* for compatibility to the rest of the world */
    #define ecb_likely(expr)   ecb_expect_true  (expr)
    #define ecb_unlikely(expr) ecb_expect_false (expr)
    
    /* count trailing zero bits and count # of one bits */
    #if ECB_GCC_VERSION(3,4)
      /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
      #define ecb_ld32(x)      (__builtin_clz      (x) ^ 31)
      #define ecb_ld64(x)      (__builtin_clzll    (x) ^ 63)
      #define ecb_ctz32(x)      __builtin_ctz      (x)
      #define ecb_ctz64(x)      __builtin_ctzll    (x)
      #define ecb_popcount32(x) __builtin_popcount (x)
      /* no popcountll */
    #else
      ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
      ecb_function_ int
      ecb_ctz32 (uint32_t x)
      {
        int r = 0;
    
        x &= ~x + 1; /* this isolates the lowest bit */
    
    #if ECB_branchless_on_i386
        r += !!(x & 0xaaaaaaaa) << 0;
        r += !!(x & 0xcccccccc) << 1;
        r += !!(x & 0xf0f0f0f0) << 2;
        r += !!(x & 0xff00ff00) << 3;
        r += !!(x & 0xffff0000) << 4;
    #else
        if (x & 0xaaaaaaaa) r +=  1;
        if (x & 0xcccccccc) r +=  2;
        if (x & 0xf0f0f0f0) r +=  4;
        if (x & 0xff00ff00) r +=  8;
        if (x & 0xffff0000) r += 16;
    #endif
    
        return r;
      }
    
      ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
      ecb_function_ int
      ecb_ctz64 (uint64_t x)
      {
        int shift = x & 0xffffffffU ? 0 : 32;
        return ecb_ctz32 (x >> shift) + shift;
      }
    
      ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
      ecb_function_ int
      ecb_popcount32 (uint32_t x)
      {
        x -=  (x >> 1) & 0x55555555;
        x  = ((x >> 2) & 0x33333333) + (x & 0x33333333);
        x  = ((x >> 4) + x) & 0x0f0f0f0f;
        x *= 0x01010101;
    
        return x >> 24;
      }
    
      ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
      ecb_function_ int ecb_ld32 (uint32_t x)
      {
        int r = 0;
    
        if (x >> 16) { x >>= 16; r += 16; }
        if (x >>  8) { x >>=  8; r +=  8; }
        if (x >>  4) { x >>=  4; r +=  4; }
        if (x >>  2) { x >>=  2; r +=  2; }
        if (x >>  1) {           r +=  1; }
    
        return r;
      }
    
      ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
      ecb_function_ int ecb_ld64 (uint64_t x)
      {
        int r = 0;
    
        if (x >> 32) { x >>= 32; r += 32; }
    
        return r + ecb_ld32 (x);
      }
    #endif
    
    ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
    ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
    ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
    ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
    
    ecb_function_ uint8_t  ecb_bitrev8  (uint8_t  x) ecb_const;
    ecb_function_ uint8_t  ecb_bitrev8  (uint8_t  x)
    {
      return (  (x * 0x0802U & 0x22110U)
              | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; 
    }
    
    ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
    ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
    {
      x = ((x >>  1) &     0x5555) | ((x &     0x5555) <<  1);
      x = ((x >>  2) &     0x3333) | ((x &     0x3333) <<  2);
      x = ((x >>  4) &     0x0f0f) | ((x &     0x0f0f) <<  4);
      x = ( x >>  8              ) | ( x               <<  8);
    
      return x;
    }
    
    ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
    ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
    {
      x = ((x >>  1) & 0x55555555) | ((x & 0x55555555) <<  1);
      x = ((x >>  2) & 0x33333333) | ((x & 0x33333333) <<  2);
      x = ((x >>  4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) <<  4);
      x = ((x >>  8) & 0x00ff00ff) | ((x & 0x00ff00ff) <<  8);
      x = ( x >> 16              ) | ( x               << 16);
    
      return x;
    }
    
    /* popcount64 is only available on 64 bit cpus as gcc builtin */
    /* so for this version we are lazy */
    ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
    ecb_function_ int
    ecb_popcount64 (uint64_t x)
    {
      return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
    }
    
    ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) ecb_const;
    ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) ecb_const;
    ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
    ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
    ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
    ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
    ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
    ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
    
    ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
    ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
    ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
    ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
    ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
    ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
    ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
    ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
    
    #if ECB_GCC_VERSION(4,3)
      #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
      #define ecb_bswap32(x)  __builtin_bswap32 (x)
      #define ecb_bswap64(x)  __builtin_bswap64 (x)
    #else
      ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
      ecb_function_ uint16_t
      ecb_bswap16 (uint16_t x)
      {
        return ecb_rotl16 (x, 8);
      }
    
      ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
      ecb_function_ uint32_t
      ecb_bswap32 (uint32_t x)
      {
        return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
      }
    
      ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
      ecb_function_ uint64_t
      ecb_bswap64 (uint64_t x)
      {
        return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
      }
    #endif
    
    #if ECB_GCC_VERSION(4,5)
      #define ecb_unreachable() __builtin_unreachable ()
    #else
      /* this seems to work fine, but gcc always emits a warning for it :/ */
      ecb_inline void ecb_unreachable (void) ecb_noreturn;
      ecb_inline void ecb_unreachable (void) { }
    #endif
    
    /* try to tell the compiler that some condition is definitely true */
    #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
    
    ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
    ecb_inline unsigned char
    ecb_byteorder_helper (void)
    {
      /* the union code still generates code under pressure in gcc, */
      /* but less than using pointers, and always seems to */
      /* successfully return a constant. */
      /* the reason why we have this horrible preprocessor mess */
      /* is to avoid it in all cases, at least on common architectures */
      /* or when using a recent enough gcc version (>= 4.6) */
    #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
      return 0x44;
    #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
      return 0x44;
    #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
      return 0x11;
    #else
      union
      {
        uint32_t i;
        uint8_t c;
      } u = { 0x11223344 };
      return u.c;
    #endif
    }
    
    ecb_inline ecb_bool ecb_big_endian    (void) ecb_const;
    ecb_inline ecb_bool ecb_big_endian    (void) { return ecb_byteorder_helper () == 0x11; }
    ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
    ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
    
    #if ECB_GCC_VERSION(3,0) || ECB_C99
      #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
    #else
      #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
    #endif
    
    #if __cplusplus
      template<typename T>
      static inline T ecb_div_rd (T val, T div)
      {
        return val < 0 ? - ((-val + div - 1) / div) : (val          ) / div;
      }
      template<typename T>
      static inline T ecb_div_ru (T val, T div)
      {
        return val < 0 ? - ((-val          ) / div) : (val + div - 1) / div;
      }
    #else
      #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val)            ) / (div))
      #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val)            ) / (div)) : ((val) + (div) - 1) / (div))
    #endif
    
    #if ecb_cplusplus_does_not_suck
      /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
      template<typename T, int N>
      static inline int ecb_array_length (const T (&arr)[N])
      {
        return N;
      }
    #else
      #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
    #endif
    
    /*******************************************************************************/
    /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
    
    /* basically, everything uses "ieee pure-endian" floating point numbers */
    /* the only noteworthy exception is ancient armle, which uses order 43218765 */
    #if 0 
        || __i386 || __i386__ 
        || __amd64 || __amd64__ || __x86_64 || __x86_64__ 
        || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ 
        || defined __arm__ && defined __ARM_EABI__ 
        || defined __s390__ || defined __s390x__ 
        || defined __mips__ 
        || defined __alpha__ 
        || defined __hppa__ 
        || defined __ia64__ 
        || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
      #define ECB_STDFP 1
      #include <string.h> /* for memcpy */
    #else
      #define ECB_STDFP 0
      #include <math.h> /* for frexp*, ldexp* */
    #endif
    
    #ifndef ECB_NO_LIBM
    
      /* convert a float to ieee single/binary32 */
      ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
      ecb_function_ uint32_t
      ecb_float_to_binary32 (float x)
      {
        uint32_t r;
    
        #if ECB_STDFP
          memcpy (&r, &x, 4);
        #else
          /* slow emulation, works for anything but -0 */
          uint32_t m;
          int e;
    
          if (x == 0e0f                    ) return 0x00000000U;
          if (x > +3.40282346638528860e+38f) return 0x7f800000U;
          if (x < -3.40282346638528860e+38f) return 0xff800000U;
          if (x != x                       ) return 0x7fbfffffU;
    
          m = frexpf (x, &e) * 0x1000000U;
    
          r = m & 0x80000000U;
    
          if (r)
            m = -m;
    
          if (e <= -126)
            {
              m &= 0xffffffU;
              m >>= (-125 - e);
              e = -126;
            }
    
          r |= (e + 126) << 23;
          r |= m & 0x7fffffU;
        #endif
    
        return r;
      }
    
      /* converts an ieee single/binary32 to a float */
      ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
      ecb_function_ float
      ecb_binary32_to_float (uint32_t x)
      {
        float r;
    
        #if ECB_STDFP
          memcpy (&r, &x, 4);
        #else
          /* emulation, only works for normals and subnormals and +0 */
          int neg = x >> 31;
          int e = (x >> 23) & 0xffU;
    
          x &= 0x7fffffU;
    
          if (e)
            x |= 0x800000U;
          else
            e = 1;
    
          /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
          r = ldexpf (x * (0.5f / 0x800000U), e - 126);
    
          r = neg ? -r : r;
        #endif
    
        return r;
      }
    
      /* convert a double to ieee double/binary64 */
      ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
      ecb_function_ uint64_t
      ecb_double_to_binary64 (double x)
      {
        uint64_t r;
    
        #if ECB_STDFP
          memcpy (&r, &x, 8);
        #else
          /* slow emulation, works for anything but -0 */
          uint64_t m;
          int e;
    
          if (x == 0e0                     ) return 0x0000000000000000U;
          if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
          if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
          if (x != x                       ) return 0X7ff7ffffffffffffU;
    
          m = frexp (x, &e) * 0x20000000000000U;
    
          r = m & 0x8000000000000000;;
    
          if (r)
            m = -m;
    
          if (e <= -1022)
            {
              m &= 0x1fffffffffffffU;
              m >>= (-1021 - e);
              e = -1022;
            }
    
          r |= ((uint64_t)(e + 1022)) << 52;
          r |= m & 0xfffffffffffffU;
        #endif
    
        return r;
      }
    
      /* converts an ieee double/binary64 to a double */
      ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
      ecb_function_ double
      ecb_binary64_to_double (uint64_t x)
      {
        double r;
    
        #if ECB_STDFP
          memcpy (&r, &x, 8);
        #else
          /* emulation, only works for normals and subnormals and +0 */
          int neg = x >> 63;
          int e = (x >> 52) & 0x7ffU;
    
          x &= 0xfffffffffffffU;
    
          if (e)
            x |= 0x10000000000000U;
          else
            e = 1;
    
          /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
          r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
    
          r = neg ? -r : r;
        #endif
    
        return r;
      }
    
    #endif
    
    #endif
    
    /* ECB.H END */
    
    #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
    /* if your architecture doesn't need memory fences, e.g. because it is
     * single-cpu/core, or if you use libev in a project that doesn't use libev
     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
     * libev, in which cases the memory fences become nops.
     * alternatively, you can remove this #error and link against libpthread,
     * which will then provide the memory fences.
     */
    # error "memory fences not defined for your architecture, please report"
    #endif
    
    #ifndef ECB_MEMORY_FENCE
    # define ECB_MEMORY_FENCE do { } while (0)
    # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
    # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
    #endif
    
    #define expect_false(cond) ecb_expect_false (cond)
    #define expect_true(cond)  ecb_expect_true  (cond)
    #define noinline           ecb_noinline
    
    #define inline_size        ecb_inline
    
    #if EV_FEATURE_CODE
    # define inline_speed      ecb_inline
    #else
    # define inline_speed      static noinline
    #endif
    
    #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
    
    #if EV_MINPRI == EV_MAXPRI
    # define ABSPRI(w) (((W)w), 0)
    #else
    # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
    #endif
    
    #define EMPTY       /* required for microsofts broken pseudo-c compiler */
    #define EMPTY2(a,b) /* used to suppress some warnings */
    
    typedef ev_watcher *W;
    typedef ev_watcher_list *WL;
    typedef ev_watcher_time *WT;
    
    #define ev_active(w) ((W)(w))->active
    #define ev_at(w) ((WT)(w))->at
    
    #if EV_USE_REALTIME
    /* sig_atomic_t is used to avoid per-thread variables or locking but still */
    /* giving it a reasonably high chance of working on typical architectures */
    static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
    #endif
    
    #if EV_USE_MONOTONIC
    static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
    #endif
    
    #ifndef EV_FD_TO_WIN32_HANDLE
    # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
    #endif
    #ifndef EV_WIN32_HANDLE_TO_FD
    # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
    #endif
    #ifndef EV_WIN32_CLOSE_FD
    # define EV_WIN32_CLOSE_FD(fd) close (fd)
    #endif
    
    #ifdef _WIN32
    # include "ev_win32.c"
    #endif
    
    /*****************************************************************************/
    
    /* define a suitable floor function (only used by periodics atm) */
    
    #if EV_USE_FLOOR
    # include <math.h>
    # define ev_floor(v) floor (v)
    #else
    
    #include <float.h>
    
    /* a floor() replacement function, should be independent of ev_tstamp type */
    static ev_tstamp noinline
    ev_floor (ev_tstamp v)
    {
      /* the choice of shift factor is not terribly important */
    #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
      const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
    #else
      const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
    #endif
    
      /* argument too large for an unsigned long? */
      if (expect_false (v >= shift))
        {
          ev_tstamp f;
    
          if (v == v - 1.)
            return v; /* very large number */
    
          f = shift * ev_floor (v * (1. / shift));
          return f + ev_floor (v - f);
        }
    
      /* special treatment for negative args? */
      if (expect_false (v < 0.))
        {
          ev_tstamp f = -ev_floor (-v);
    
          return f - (f == v ? 0 : 1);
        }
    
      /* fits into an unsigned long */
      return (unsigned long)v;
    }
    
    #endif
    
    /*****************************************************************************/
    
    #ifdef __linux
    # include <sys/utsname.h>
    #endif
    
    static unsigned int noinline ecb_cold
    ev_linux_version (void)
    {
    #ifdef __linux
      unsigned int v = 0;
      struct utsname buf;
      int i;
      char *p = buf.release;
    
      if (uname (&buf))
        return 0;
    
      for (i = 3+1; --i; )
        {
          unsigned int c = 0;
    
          for (;;)
            {
              if (*p >= '0' && *p <= '9')
                c = c * 10 + *p++ - '0';
              else
                {
                  p += *p == '.';
                  break;
                }
            }
    
          v = (v << 8) | c;
        }
    
      return v;
    #else
      return 0;
    #endif
    }
    
    /*****************************************************************************/
    
    #if EV_AVOID_STDIO
    static void noinline ecb_cold
    ev_printerr (const char *msg)
    {
      write (STDERR_FILENO, msg, strlen (msg));
    }
    #endif
    
    static void (*syserr_cb)(const char *msg) EV_THROW;
    
    void ecb_cold
    ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
    {
      syserr_cb = cb;
    }
    
    static void noinline ecb_cold
    ev_syserr (const char *msg)
    {
      if (!msg)
        msg = "(libev) system error";
    
      if (syserr_cb)
        syserr_cb (msg);
      else
        {
    #if EV_AVOID_STDIO
          ev_printerr (msg);
          ev_printerr (": ");
          ev_printerr (strerror (errno));
          ev_printerr ("
    ");
    #else
          perror (msg);
    #endif
          abort ();
        }
    }
    
    static void *
    ev_realloc_emul (void *ptr, long size) EV_THROW
    {
      /* some systems, notably openbsd and darwin, fail to properly
       * implement realloc (x, 0) (as required by both ansi c-89 and
       * the single unix specification, so work around them here.
       * recently, also (at least) fedora and debian started breaking it,
       * despite documenting it otherwise.
       */
    
      if (size)
        return realloc (ptr, size);
    
      free (ptr);
      return 0;
    }
    
    static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
    
    void ecb_cold
    ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
    {
      alloc = cb;
    }
    
    inline_speed void *
    ev_realloc (void *ptr, long size)
    {
      ptr = alloc (ptr, size);
    
      if (!ptr && size)
        {
    #if EV_AVOID_STDIO
          ev_printerr ("(libev) memory allocation failed, aborting.
    ");
    #else
          fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
    #endif
          abort ();
        }
    
      return ptr;
    }
    
    #define ev_malloc(size) ev_realloc (0, (size))
    #define ev_free(ptr)    ev_realloc ((ptr), 0)
    
    /*****************************************************************************/
    
    /* set in reify when reification needed */
    #define EV_ANFD_REIFY 1
    
    /* file descriptor info structure */
    typedef struct
    {
      WL head;
      unsigned char events; /* the events watched for */
      unsigned char reify;  /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
      unsigned char emask;  /* the epoll backend stores the actual kernel mask in here */
      unsigned char unused;
    #if EV_USE_EPOLL
      unsigned int egen;    /* generation counter to counter epoll bugs */
    #endif
    #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
      SOCKET handle;
    #endif
    #if EV_USE_IOCP
      OVERLAPPED or, ow;
    #endif
    } ANFD;
    
    /* stores the pending event set for a given watcher */
    typedef struct
    {
      W w;
      int events; /* the pending event set for the given watcher */
    } ANPENDING;
    
    #if EV_USE_INOTIFY
    /* hash table entry per inotify-id */
    typedef struct
    {
      WL head;
    } ANFS;
    #endif
    
    /* Heap Entry */
    #if EV_HEAP_CACHE_AT
      /* a heap element */
      typedef struct {
        ev_tstamp at;
        WT w;
      } ANHE;
    
      #define ANHE_w(he)        (he).w     /* access watcher, read-write */
      #define ANHE_at(he)       (he).at    /* access cached at, read-only */
      #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
    #else
      /* a heap element */
      typedef WT ANHE;
    
      #define ANHE_w(he)        (he)
      #define ANHE_at(he)       (he)->at
      #define ANHE_at_cache(he)
    #endif
    
    #if EV_MULTIPLICITY
    
      struct ev_loop
      {
        ev_tstamp ev_rt_now;
        #define ev_rt_now ((loop)->ev_rt_now)
        #define VAR(name,decl) decl;
          #include "ev_vars.h"
        #undef VAR
      };
      #include "ev_wrap.h"
    
      static struct ev_loop default_loop_struct;
      EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
    
    #else
    
      EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
      #define VAR(name,decl) static decl;
        #include "ev_vars.h"
      #undef VAR
    
      static int ev_default_loop_ptr;
    
    #endif
    
    #if EV_FEATURE_API
    # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
    # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
    # define EV_INVOKE_PENDING invoke_cb (EV_A)
    #else
    # define EV_RELEASE_CB (void)0
    # define EV_ACQUIRE_CB (void)0
    # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
    #endif
    
    #define EVBREAK_RECURSE 0x80
    
    /*****************************************************************************/
    
    #ifndef EV_HAVE_EV_TIME
    ev_tstamp
    ev_time (void) EV_THROW
    {
    #if EV_USE_REALTIME
      if (expect_true (have_realtime))
        {
          struct timespec ts;
          clock_gettime (CLOCK_REALTIME, &ts);
          return ts.tv_sec + ts.tv_nsec * 1e-9;
        }
    #endif
    
      struct timeval tv;
      gettimeofday (&tv, 0);
      return tv.tv_sec + tv.tv_usec * 1e-6;
    }
    #endif
    
    inline_size ev_tstamp
    get_clock (void)
    {
    #if EV_USE_MONOTONIC
      if (expect_true (have_monotonic))
        {
          struct timespec ts;
          clock_gettime (CLOCK_MONOTONIC, &ts);
          return ts.tv_sec + ts.tv_nsec * 1e-9;
        }
    #endif
    
      return ev_time ();
    }
    
    #if EV_MULTIPLICITY
    ev_tstamp
    ev_now (EV_P) EV_THROW
    {
      return ev_rt_now;
    }
    #endif
    
    void
    ev_sleep (ev_tstamp delay) EV_THROW
    {
      if (delay > 0.)
        {
    #if EV_USE_NANOSLEEP
          struct timespec ts;
    
          EV_TS_SET (ts, delay);
          nanosleep (&ts, 0);
    #elif defined _WIN32
          Sleep ((unsigned long)(delay * 1e3));
    #else
          struct timeval tv;
    
          /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
          /* something not guaranteed by newer posix versions, but guaranteed */
          /* by older ones */
          EV_TV_SET (tv, delay);
          select (0, 0, 0, 0, &tv);
    #endif
        }
    }
    
    /*****************************************************************************/
    
    #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
    
    /* find a suitable new size for the given array, */
    /* hopefully by rounding to a nice-to-malloc size */
    inline_size int
    array_nextsize (int elem, int cur, int cnt)
    {
      int ncur = cur + 1;
    
      do
        ncur <<= 1;
      while (cnt > ncur);
    
      /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
      if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
        {
          ncur *= elem;
          ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
          ncur = ncur - sizeof (void *) * 4;
          ncur /= elem;
        }
    
      return ncur;
    }
    
    static void * noinline ecb_cold
    array_realloc (int elem, void *base, int *cur, int cnt)
    {
      *cur = array_nextsize (elem, *cur, cnt);
      return ev_realloc (base, elem * *cur);
    }
    
    #define array_init_zero(base,count)	
      memset ((void *)(base), 0, sizeof (*(base)) * (count))
    
    #define array_needsize(type,base,cur,cnt,init)			
      if (expect_false ((cnt) > (cur)))				
        {								
          int ecb_unused ocur_ = (cur);					
          (base) = (type *)array_realloc				
             (sizeof (type), (base), &(cur), (cnt));		
          init ((base) + (ocur_), (cur) - ocur_);			
        }
    
    #if 0
    #define array_slim(type,stem)					
      if (stem ## max < array_roundsize (stem ## cnt >> 2))		
        {								
          stem ## max = array_roundsize (stem ## cnt >> 1);		
          base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));
          fprintf (stderr, "slimmed down " # stem " to %d
    ", stem ## max);/*D*/
        }
    #endif
    
    #define array_free(stem, idx) 
      ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
    
    /*****************************************************************************/
    
    /* dummy callback for pending events */
    static void noinline
    pendingcb (EV_P_ ev_prepare *w, int revents)
    {
    }
    
    void noinline
    ev_feed_event (EV_P_ void *w, int revents) EV_THROW
    {
      W w_ = (W)w;
      int pri = ABSPRI (w_);
    
      if (expect_false (w_->pending))
        pendings [pri][w_->pending - 1].events |= revents;
      else
        {
          w_->pending = ++pendingcnt [pri];
          array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
          pendings [pri][w_->pending - 1].w      = w_;
          pendings [pri][w_->pending - 1].events = revents;
        }
    
      pendingpri = NUMPRI - 1;
    }
    
    inline_speed void
    feed_reverse (EV_P_ W w)
    {
      array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
      rfeeds [rfeedcnt++] = w;
    }
    
    inline_size void
    feed_reverse_done (EV_P_ int revents)
    {
      do
        ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
      while (rfeedcnt);
    }
    
    inline_speed void
    queue_events (EV_P_ W *events, int eventcnt, int type)
    {
      int i;
    
      for (i = 0; i < eventcnt; ++i)
        ev_feed_event (EV_A_ events [i], type);
    }
    
    /*****************************************************************************/
    
    inline_speed void
    fd_event_nocheck (EV_P_ int fd, int revents)
    {
      ANFD *anfd = anfds + fd;
      ev_io *w;
    
      for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
        {
          int ev = w->events & revents;
    
          if (ev)
            ev_feed_event (EV_A_ (W)w, ev);
        }
    }
    
    /* do not submit kernel events for fds that have reify set */
    /* because that means they changed while we were polling for new events */
    inline_speed void
    fd_event (EV_P_ int fd, int revents)
    {
      ANFD *anfd = anfds + fd;
    
      if (expect_true (!anfd->reify))
        fd_event_nocheck (EV_A_ fd, revents);
    }
    
    void
    ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
    {
      if (fd >= 0 && fd < anfdmax)
        fd_event_nocheck (EV_A_ fd, revents);
    }
    
    /* make sure the external fd watch events are in-sync */
    /* with the kernel/libev internal state */
    inline_size void
    fd_reify (EV_P)
    {
      int i;
    
    #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
      for (i = 0; i < fdchangecnt; ++i)
        {
          int fd = fdchanges [i];
          ANFD *anfd = anfds + fd;
    
          if (anfd->reify & EV__IOFDSET && anfd->head)
            {
              SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
    
              if (handle != anfd->handle)
                {
                  unsigned long arg;
    
                  assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
    
                  /* handle changed, but fd didn't - we need to do it in two steps */
                  backend_modify (EV_A_ fd, anfd->events, 0);
                  anfd->events = 0;
                  anfd->handle = handle;
                }
            }
        }
    #endif
    
      for (i = 0; i < fdchangecnt; ++i)
        {
          int fd = fdchanges [i];
          ANFD *anfd = anfds + fd;
          ev_io *w;
    
          unsigned char o_events = anfd->events;
          unsigned char o_reify  = anfd->reify;
    
          anfd->reify  = 0;
    
          /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
            {
              anfd->events = 0;
    
              for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
                anfd->events |= (unsigned char)w->events;
    
              if (o_events != anfd->events)
                o_reify = EV__IOFDSET; /* actually |= */
            }
    
          if (o_reify & EV__IOFDSET)
            backend_modify (EV_A_ fd, o_events, anfd->events);
        }
    
      fdchangecnt = 0;
    }
    
    /* something about the given fd changed */
    inline_size void
    fd_change (EV_P_ int fd, int flags)
    {
      unsigned char reify = anfds [fd].reify;
      anfds [fd].reify |= flags;
    
      if (expect_true (!reify))
        {
          ++fdchangecnt;
          array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
          fdchanges [fdchangecnt - 1] = fd;
        }
    }
    
    /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
    inline_speed void ecb_cold
    fd_kill (EV_P_ int fd)
    {
      ev_io *w;
    
      while ((w = (ev_io *)anfds [fd].head))
        {
          ev_io_stop (EV_A_ w);
          ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
        }
    }
    
    /* check whether the given fd is actually valid, for error recovery */
    inline_size int ecb_cold
    fd_valid (int fd)
    {
    #ifdef _WIN32
      return EV_FD_TO_WIN32_HANDLE (fd) != -1;
    #else
      return fcntl (fd, F_GETFD) != -1;
    #endif
    }
    
    /* called on EBADF to verify fds */
    static void noinline ecb_cold
    fd_ebadf (EV_P)
    {
      int fd;
    
      for (fd = 0; fd < anfdmax; ++fd)
        if (anfds [fd].events)
          if (!fd_valid (fd) && errno == EBADF)
            fd_kill (EV_A_ fd);
    }
    
    /* called on ENOMEM in select/poll to kill some fds and retry */
    static void noinline ecb_cold
    fd_enomem (EV_P)
    {
      int fd;
    
      for (fd = anfdmax; fd--; )
        if (anfds [fd].events)
          {
            fd_kill (EV_A_ fd);
            break;
          }
    }
    
    /* usually called after fork if backend needs to re-arm all fds from scratch */
    static void noinline
    fd_rearm_all (EV_P)
    {
      int fd;
    
      for (fd = 0; fd < anfdmax; ++fd)
        if (anfds [fd].events)
          {
            anfds [fd].events = 0;
            anfds [fd].emask  = 0;
            fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
          }
    }
    
    /* used to prepare libev internal fd's */
    /* this is not fork-safe */
    inline_speed void
    fd_intern (int fd)
    {
    #ifdef _WIN32
      unsigned long arg = 1;
      ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
    #else
      fcntl (fd, F_SETFD, FD_CLOEXEC);
      fcntl (fd, F_SETFL, O_NONBLOCK);
    #endif
    }
    
    /*****************************************************************************/
    
    /*
     * the heap functions want a real array index. array index 0 is guaranteed to not
     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
     * the branching factor of the d-tree.
     */
    
    /*
     * at the moment we allow libev the luxury of two heaps,
     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
     * which is more cache-efficient.
     * the difference is about 5% with 50000+ watchers.
     */
    #if EV_USE_4HEAP
    
    #define DHEAP 4
    #define HEAP0 (DHEAP - 1) /* index of first element in heap */
    #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
    #define UPHEAP_DONE(p,k) ((p) == (k))
    
    /* away from the root */
    inline_speed void
    downheap (ANHE *heap, int N, int k)
    {
      ANHE he = heap [k];
      ANHE *E = heap + N + HEAP0;
    
      for (;;)
        {
          ev_tstamp minat;
          ANHE *minpos;
          ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
    
          /* find minimum child */
          if (expect_true (pos + DHEAP - 1 < E))
            {
              /* fast path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
              if (               ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
              if (               ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
              if (               ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
            }
          else if (pos < E)
            {
              /* slow path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
              if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
              if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
              if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
            }
          else
            break;
    
          if (ANHE_at (he) <= minat)
            break;
    
          heap [k] = *minpos;
          ev_active (ANHE_w (*minpos)) = k;
    
          k = minpos - heap;
        }
    
      heap [k] = he;
      ev_active (ANHE_w (he)) = k;
    }
    
    #else /* 4HEAP */
    
    #define HEAP0 1
    #define HPARENT(k) ((k) >> 1)
    #define UPHEAP_DONE(p,k) (!(p))
    
    /* away from the root */
    inline_speed void
    downheap (ANHE *heap, int N, int k)
    {
      ANHE he = heap [k];
    
      for (;;)
        {
          int c = k << 1;
    
          if (c >= N + HEAP0)
            break;
    
          c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
               ? 1 : 0;
    
          if (ANHE_at (he) <= ANHE_at (heap [c]))
            break;
    
          heap [k] = heap [c];
          ev_active (ANHE_w (heap [k])) = k;
          
          k = c;
        }
    
      heap [k] = he;
      ev_active (ANHE_w (he)) = k;
    }
    #endif
    
    /* towards the root */
    inline_speed void
    upheap (ANHE *heap, int k)
    {
      ANHE he = heap [k];
    
      for (;;)
        {
          int p = HPARENT (k);
    
          if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
            break;
    
          heap [k] = heap [p];
          ev_active (ANHE_w (heap [k])) = k;
          k = p;
        }
    
      heap [k] = he;
      ev_active (ANHE_w (he)) = k;
    }
    
    /* move an element suitably so it is in a correct place */
    inline_size void
    adjustheap (ANHE *heap, int N, int k)
    {
      if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
        upheap (heap, k);
      else
        downheap (heap, N, k);
    }
    
    /* rebuild the heap: this function is used only once and executed rarely */
    inline_size void
    reheap (ANHE *heap, int N)
    {
      int i;
    
      /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
      /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
      for (i = 0; i < N; ++i)
        upheap (heap, i + HEAP0);
    }
    
    /*****************************************************************************/
    
    /* associate signal watchers to a signal signal */
    typedef struct
    {
      EV_ATOMIC_T pending;
    #if EV_MULTIPLICITY
      EV_P;
    #endif
      WL head;
    } ANSIG;
    
    static ANSIG signals [EV_NSIG - 1];
    
    /*****************************************************************************/
    
    #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
    
    static void noinline ecb_cold
    evpipe_init (EV_P)
    {
      if (!ev_is_active (&pipe_w))
        {
          int fds [2];
    
    # if EV_USE_EVENTFD
          fds [0] = -1;
          fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
          if (fds [1] < 0 && errno == EINVAL)
            fds [1] = eventfd (0, 0);
    
          if (fds [1] < 0)
    # endif
            {
              while (pipe (fds))
                ev_syserr ("(libev) error creating signal/async pipe");
    
              fd_intern (fds [0]);
            }
    
          fd_intern (fds [1]);
    
          evpipe [0] = fds [0];
    
          if (evpipe [1] < 0)
            evpipe [1] = fds [1]; /* first call, set write fd */
          else
            {
              /* on subsequent calls, do not change evpipe [1] */
              /* so that evpipe_write can always rely on its value. */
              /* this branch does not do anything sensible on windows, */
              /* so must not be executed on windows */
    
              dup2 (fds [1], evpipe [1]);
              close (fds [1]);
            }
    
          ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
          ev_io_start (EV_A_ &pipe_w);
          ev_unref (EV_A); /* watcher should not keep loop alive */
        }
    }
    
    inline_speed void
    evpipe_write (EV_P_ EV_ATOMIC_T *flag)
    {
      ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
    
      if (expect_true (*flag))
        return;
    
      *flag = 1;
      ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
    
      pipe_write_skipped = 1;
    
      ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
    
      if (pipe_write_wanted)
        {
          int old_errno;
    
          pipe_write_skipped = 0;
          ECB_MEMORY_FENCE_RELEASE;
    
          old_errno = errno; /* save errno because write will clobber it */
    
    #if EV_USE_EVENTFD
          if (evpipe [0] < 0)
            {
              uint64_t counter = 1;
              write (evpipe [1], &counter, sizeof (uint64_t));
            }
          else
    #endif
            {
    #ifdef _WIN32
              WSABUF buf;
              DWORD sent;
              buf.buf = &buf;
              buf.len = 1;
              WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
    #else
              write (evpipe [1], &(evpipe [1]), 1);
    #endif
            }
    
          errno = old_errno;
        }
    }
    
    /* called whenever the libev signal pipe */
    /* got some events (signal, async) */
    static void
    pipecb (EV_P_ ev_io *iow, int revents)
    {
      int i;
    
      if (revents & EV_READ)
        {
    #if EV_USE_EVENTFD
          if (evpipe [0] < 0)
            {
              uint64_t counter;
              read (evpipe [1], &counter, sizeof (uint64_t));
            }
          else
    #endif
            {
              char dummy[4];
    #ifdef _WIN32
              WSABUF buf;
              DWORD recvd;
              DWORD flags = 0;
              buf.buf = dummy;
              buf.len = sizeof (dummy);
              WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
    #else
              read (evpipe [0], &dummy, sizeof (dummy));
    #endif
            }
        }
    
      pipe_write_skipped = 0;
    
      ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
    
    #if EV_SIGNAL_ENABLE
      if (sig_pending)
        {
          sig_pending = 0;
    
          ECB_MEMORY_FENCE;
    
          for (i = EV_NSIG - 1; i--; )
            if (expect_false (signals [i].pending))
              ev_feed_signal_event (EV_A_ i + 1);
        }
    #endif
    
    #if EV_ASYNC_ENABLE
      if (async_pending)
        {
          async_pending = 0;
    
          ECB_MEMORY_FENCE;
    
          for (i = asynccnt; i--; )
            if (asyncs [i]->sent)
              {
                asyncs [i]->sent = 0;
                ECB_MEMORY_FENCE_RELEASE;
                ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
              }
        }
    #endif
    }
    
    /*****************************************************************************/
    
    void
    ev_feed_signal (int signum) EV_THROW
    {
    #if EV_MULTIPLICITY
      EV_P;
      ECB_MEMORY_FENCE_ACQUIRE;
      EV_A = signals [signum - 1].loop;
    
      if (!EV_A)
        return;
    #endif
    
      signals [signum - 1].pending = 1;
      evpipe_write (EV_A_ &sig_pending);
    }
    
    static void
    ev_sighandler (int signum)
    {
    #ifdef _WIN32
      signal (signum, ev_sighandler);
    #endif
    
      ev_feed_signal (signum);
    }
    
    void noinline
    ev_feed_signal_event (EV_P_ int signum) EV_THROW
    {
      WL w;
    
      if (expect_false (signum <= 0 || signum >= EV_NSIG))
        return;
    
      --signum;
    
    #if EV_MULTIPLICITY
      /* it is permissible to try to feed a signal to the wrong loop */
      /* or, likely more useful, feeding a signal nobody is waiting for */
    
      if (expect_false (signals [signum].loop != EV_A))
        return;
    #endif
    
      signals [signum].pending = 0;
      ECB_MEMORY_FENCE_RELEASE;
    
      for (w = signals [signum].head; w; w = w->next)
        ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
    }
    
    #if EV_USE_SIGNALFD
    static void
    sigfdcb (EV_P_ ev_io *iow, int revents)
    {
      struct signalfd_siginfo si[2], *sip; /* these structs are big */
    
      for (;;)
        {
          ssize_t res = read (sigfd, si, sizeof (si));
    
          /* not ISO-C, as res might be -1, but works with SuS */
          for (sip = si; (char *)sip < (char *)si + res; ++sip)
            ev_feed_signal_event (EV_A_ sip->ssi_signo);
    
          if (res < (ssize_t)sizeof (si))
            break;
        }
    }
    #endif
    
    #endif
    
    /*****************************************************************************/
    
    #if EV_CHILD_ENABLE
    static WL childs [EV_PID_HASHSIZE];
    
    static ev_signal childev;
    
    #ifndef WIFCONTINUED
    # define WIFCONTINUED(status) 0
    #endif
    
    /* handle a single child status event */
    inline_speed void
    child_reap (EV_P_ int chain, int pid, int status)
    {
      ev_child *w;
      int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
    
      for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
        {
          if ((w->pid == pid || !w->pid)
              && (!traced || (w->flags & 1)))
            {
              ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
              w->rpid    = pid;
              w->rstatus = status;
              ev_feed_event (EV_A_ (W)w, EV_CHILD);
            }
        }
    }
    
    #ifndef WCONTINUED
    # define WCONTINUED 0
    #endif
    
    /* called on sigchld etc., calls waitpid */
    static void
    childcb (EV_P_ ev_signal *sw, int revents)
    {
      int pid, status;
    
      /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
      if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
        if (!WCONTINUED
            || errno != EINVAL
            || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
          return;
    
      /* make sure we are called again until all children have been reaped */
      /* we need to do it this way so that the callback gets called before we continue */
      ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
    
      child_reap (EV_A_ pid, pid, status);
      if ((EV_PID_HASHSIZE) > 1)
        child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
    }
    
    #endif
    
    /*****************************************************************************/
    
    #if EV_USE_IOCP
    # include "ev_iocp.c"
    #endif
    #if EV_USE_PORT
    # include "ev_port.c"
    #endif
    #if EV_USE_KQUEUE
    # include "ev_kqueue.c"
    #endif
    #if EV_USE_EPOLL
    # include "ev_epoll.c"
    #endif
    #if EV_USE_POLL
    # include "ev_poll.c"
    #endif
    #if EV_USE_SELECT
    # include "ev_select.c"
    #endif
    
    int ecb_cold
    ev_version_major (void) EV_THROW
    {
      return EV_VERSION_MAJOR;
    }
    
    int ecb_cold
    ev_version_minor (void) EV_THROW
    {
      return EV_VERSION_MINOR;
    }
    
    /* return true if we are running with elevated privileges and should ignore env variables */
    int inline_size ecb_cold
    enable_secure (void)
    {
    #ifdef _WIN32
      return 0;
    #else
      return getuid () != geteuid ()
          || getgid () != getegid ();
    #endif
    }
    
    unsigned int ecb_cold
    ev_supported_backends (void) EV_THROW
    {
      unsigned int flags = 0;
    
      if (EV_USE_PORT  ) flags |= EVBACKEND_PORT;
      if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
      if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
      if (EV_USE_POLL  ) flags |= EVBACKEND_POLL;
      if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
      
      return flags;
    }
    
    unsigned int ecb_cold
    ev_recommended_backends (void) EV_THROW
    {
      unsigned int flags = ev_supported_backends ();
    
    #ifndef __NetBSD__
      /* kqueue is borked on everything but netbsd apparently */
      /* it usually doesn't work correctly on anything but sockets and pipes */
      flags &= ~EVBACKEND_KQUEUE;
    #endif
    #ifdef __APPLE__
      /* only select works correctly on that "unix-certified" platform */
      flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
      flags &= ~EVBACKEND_POLL;   /* poll is based on kqueue from 10.5 onwards */
    #endif
    #ifdef __FreeBSD__
      flags &= ~EVBACKEND_POLL;   /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
    #endif
    
      return flags;
    }
    
    unsigned int ecb_cold
    ev_embeddable_backends (void) EV_THROW
    {
      int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
    
      /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
      if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
        flags &= ~EVBACKEND_EPOLL;
    
      return flags;
    }
    
    unsigned int
    ev_backend (EV_P) EV_THROW
    {
      return backend;
    }
    
    #if EV_FEATURE_API
    unsigned int
    ev_iteration (EV_P) EV_THROW
    {
      return loop_count;
    }
    
    unsigned int
    ev_depth (EV_P) EV_THROW
    {
      return loop_depth;
    }
    
    void
    ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
    {
      io_blocktime = interval;
    }
    
    void
    ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
    {
      timeout_blocktime = interval;
    }
    
    void
    ev_set_userdata (EV_P_ void *data) EV_THROW
    {
      userdata = data;
    }
    
    void *
    ev_userdata (EV_P) EV_THROW
    {
      return userdata;
    }
    
    void
    ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
    {
      invoke_cb = invoke_pending_cb;
    }
    
    void
    ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
    {
      release_cb = release;
      acquire_cb = acquire;
    }
    #endif
    
    /* initialise a loop structure, must be zero-initialised */
    static void noinline ecb_cold
    loop_init (EV_P_ unsigned int flags) EV_THROW
    {
      if (!backend)
        {
          origflags = flags;
    
    #if EV_USE_REALTIME
          if (!have_realtime)
            {
              struct timespec ts;
    
              if (!clock_gettime (CLOCK_REALTIME, &ts))
                have_realtime = 1;
            }
    #endif
    
    #if EV_USE_MONOTONIC
          if (!have_monotonic)
            {
              struct timespec ts;
    
              if (!clock_gettime (CLOCK_MONOTONIC, &ts))
                have_monotonic = 1;
            }
    #endif
    
          /* pid check not overridable via env */
    #ifndef _WIN32
          if (flags & EVFLAG_FORKCHECK)
            curpid = getpid ();
    #endif
    
          if (!(flags & EVFLAG_NOENV)
              && !enable_secure ()
              && getenv ("LIBEV_FLAGS"))
            flags = atoi (getenv ("LIBEV_FLAGS"));
    
          ev_rt_now          = ev_time ();
          mn_now             = get_clock ();
          now_floor          = mn_now;
          rtmn_diff          = ev_rt_now - mn_now;
    #if EV_FEATURE_API
          invoke_cb          = ev_invoke_pending;
    #endif
    
          io_blocktime       = 0.;
          timeout_blocktime  = 0.;
          backend            = 0;
          backend_fd         = -1;
          sig_pending        = 0;
    #if EV_ASYNC_ENABLE
          async_pending      = 0;
    #endif
          pipe_write_skipped = 0;
          pipe_write_wanted  = 0;
          evpipe [0]         = -1;
          evpipe [1]         = -1;
    #if EV_USE_INOTIFY
          fs_fd              = flags & EVFLAG_NOINOTIFY ? -1 : -2;
    #endif
    #if EV_USE_SIGNALFD
          sigfd              = flags & EVFLAG_SIGNALFD  ? -2 : -1;
    #endif
    
          if (!(flags & EVBACKEND_MASK))
            flags |= ev_recommended_backends ();
    
    #if EV_USE_IOCP
          if (!backend && (flags & EVBACKEND_IOCP  )) backend = iocp_init   (EV_A_ flags);
    #endif
    #if EV_USE_PORT
          if (!backend && (flags & EVBACKEND_PORT  )) backend = port_init   (EV_A_ flags);
    #endif
    #if EV_USE_KQUEUE
          if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
    #endif
    #if EV_USE_EPOLL
          if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init  (EV_A_ flags);
    #endif
    #if EV_USE_POLL
          if (!backend && (flags & EVBACKEND_POLL  )) backend = poll_init   (EV_A_ flags);
    #endif
    #if EV_USE_SELECT
          if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
    #endif
    
          ev_prepare_init (&pending_w, pendingcb);
    
    #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
          ev_init (&pipe_w, pipecb);
          ev_set_priority (&pipe_w, EV_MAXPRI);
    #endif
        }
    }
    
    /* free up a loop structure */
    void ecb_cold
    ev_loop_destroy (EV_P)
    {
      int i;
    
    #if EV_MULTIPLICITY
      /* mimic free (0) */
      if (!EV_A)
        return;
    #endif
    
    #if EV_CLEANUP_ENABLE
      /* queue cleanup watchers (and execute them) */
      if (expect_false (cleanupcnt))
        {
          queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
          EV_INVOKE_PENDING;
        }
    #endif
    
    #if EV_CHILD_ENABLE
      if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
        {
          ev_ref (EV_A); /* child watcher */
          ev_signal_stop (EV_A_ &childev);
        }
    #endif
    
      if (ev_is_active (&pipe_w))
        {
          /*ev_ref (EV_A);*/
          /*ev_io_stop (EV_A_ &pipe_w);*/
    
          if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
          if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
        }
    
    #if EV_USE_SIGNALFD
      if (ev_is_active (&sigfd_w))
        close (sigfd);
    #endif
    
    #if EV_USE_INOTIFY
      if (fs_fd >= 0)
        close (fs_fd);
    #endif
    
      if (backend_fd >= 0)
        close (backend_fd);
    
    #if EV_USE_IOCP
      if (backend == EVBACKEND_IOCP  ) iocp_destroy   (EV_A);
    #endif
    #if EV_USE_PORT
      if (backend == EVBACKEND_PORT  ) port_destroy   (EV_A);
    #endif
    #if EV_USE_KQUEUE
      if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
    #endif
    #if EV_USE_EPOLL
      if (backend == EVBACKEND_EPOLL ) epoll_destroy  (EV_A);
    #endif
    #if EV_USE_POLL
      if (backend == EVBACKEND_POLL  ) poll_destroy   (EV_A);
    #endif
    #if EV_USE_SELECT
      if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
    #endif
    
      for (i = NUMPRI; i--; )
        {
          array_free (pending, [i]);
    #if EV_IDLE_ENABLE
          array_free (idle, [i]);
    #endif
        }
    
      ev_free (anfds); anfds = 0; anfdmax = 0;
    
      /* have to use the microsoft-never-gets-it-right macro */
      array_free (rfeed, EMPTY);
      array_free (fdchange, EMPTY);
      array_free (timer, EMPTY);
    #if EV_PERIODIC_ENABLE
      array_free (periodic, EMPTY);
    #endif
    #if EV_FORK_ENABLE
      array_free (fork, EMPTY);
    #endif
    #if EV_CLEANUP_ENABLE
      array_free (cleanup, EMPTY);
    #endif
      array_free (prepare, EMPTY);
      array_free (check, EMPTY);
    #if EV_ASYNC_ENABLE
      array_free (async, EMPTY);
    #endif
    
      backend = 0;
    
    #if EV_MULTIPLICITY
      if (ev_is_default_loop (EV_A))
    #endif
        ev_default_loop_ptr = 0;
    #if EV_MULTIPLICITY
      else
        ev_free (EV_A);
    #endif
    }
    
    #if EV_USE_INOTIFY
    inline_size void infy_fork (EV_P);
    #endif
    
    inline_size void
    loop_fork (EV_P)
    {
    #if EV_USE_PORT
      if (backend == EVBACKEND_PORT  ) port_fork   (EV_A);
    #endif
    #if EV_USE_KQUEUE
      if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
    #endif
    #if EV_USE_EPOLL
      if (backend == EVBACKEND_EPOLL ) epoll_fork  (EV_A);
    #endif
    #if EV_USE_INOTIFY
      infy_fork (EV_A);
    #endif
    
    #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
      if (ev_is_active (&pipe_w))
        {
          /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
    
          ev_ref (EV_A);
          ev_io_stop (EV_A_ &pipe_w);
    
          if (evpipe [0] >= 0)
            EV_WIN32_CLOSE_FD (evpipe [0]);
    
          evpipe_init (EV_A);
          /* iterate over everything, in case we missed something before */
          ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
        }
    #endif
    
      postfork = 0;
    }
    
    #if EV_MULTIPLICITY
    
    struct ev_loop * ecb_cold
    ev_loop_new (unsigned int flags) EV_THROW
    {
      EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
    
      memset (EV_A, 0, sizeof (struct ev_loop));
      loop_init (EV_A_ flags);
    
      if (ev_backend (EV_A))
        return EV_A;
    
      ev_free (EV_A);
      return 0;
    }
    
    #endif /* multiplicity */
    
    #if EV_VERIFY
    static void noinline ecb_cold
    verify_watcher (EV_P_ W w)
    {
      assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
    
      if (w->pending)
        assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
    }
    
    static void noinline ecb_cold
    verify_heap (EV_P_ ANHE *heap, int N)
    {
      int i;
    
      for (i = HEAP0; i < N + HEAP0; ++i)
        {
          assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
          assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
          assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
    
          verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
        }
    }
    
    static void noinline ecb_cold
    array_verify (EV_P_ W *ws, int cnt)
    {
      while (cnt--)
        {
          assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
          verify_watcher (EV_A_ ws [cnt]);
        }
    }
    #endif
    
    #if EV_FEATURE_API
    void ecb_cold
    ev_verify (EV_P) EV_THROW
    {
    #if EV_VERIFY
      int i;
      WL w, w2;
    
      assert (activecnt >= -1);
    
      assert (fdchangemax >= fdchangecnt);
      for (i = 0; i < fdchangecnt; ++i)
        assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
    
      assert (anfdmax >= 0);
      for (i = 0; i < anfdmax; ++i)
        {
          int j = 0;
    
          for (w = w2 = anfds [i].head; w; w = w->next)
            {
              verify_watcher (EV_A_ (W)w);
    
              if (j++ & 1)
                {
                  assert (("libev: io watcher list contains a loop", w != w2));
                  w2 = w2->next;
                }
    
              assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
              assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
            }
        }
    
      assert (timermax >= timercnt);
      verify_heap (EV_A_ timers, timercnt);
    
    #if EV_PERIODIC_ENABLE
      assert (periodicmax >= periodiccnt);
      verify_heap (EV_A_ periodics, periodiccnt);
    #endif
    
      for (i = NUMPRI; i--; )
        {
          assert (pendingmax [i] >= pendingcnt [i]);
    #if EV_IDLE_ENABLE
          assert (idleall >= 0);
          assert (idlemax [i] >= idlecnt [i]);
          array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
    #endif
        }
    
    #if EV_FORK_ENABLE
      assert (forkmax >= forkcnt);
      array_verify (EV_A_ (W *)forks, forkcnt);
    #endif
    
    #if EV_CLEANUP_ENABLE
      assert (cleanupmax >= cleanupcnt);
      array_verify (EV_A_ (W *)cleanups, cleanupcnt);
    #endif
    
    #if EV_ASYNC_ENABLE
      assert (asyncmax >= asynccnt);
      array_verify (EV_A_ (W *)asyncs, asynccnt);
    #endif
    
    #if EV_PREPARE_ENABLE
      assert (preparemax >= preparecnt);
      array_verify (EV_A_ (W *)prepares, preparecnt);
    #endif
    
    #if EV_CHECK_ENABLE
      assert (checkmax >= checkcnt);
      array_verify (EV_A_ (W *)checks, checkcnt);
    #endif
    
    # if 0
    #if EV_CHILD_ENABLE
      for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
      for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
    #endif
    # endif
    #endif
    }
    #endif
    
    #if EV_MULTIPLICITY
    struct ev_loop * ecb_cold
    #else
    int
    #endif
    ev_default_loop (unsigned int flags) EV_THROW
    {
      if (!ev_default_loop_ptr)
        {
    #if EV_MULTIPLICITY
          EV_P = ev_default_loop_ptr = &default_loop_struct;
    #else
          ev_default_loop_ptr = 1;
    #endif
    
          loop_init (EV_A_ flags);
    
          if (ev_backend (EV_A))
            {
    #if EV_CHILD_ENABLE
              ev_signal_init (&childev, childcb, SIGCHLD);
              ev_set_priority (&childev, EV_MAXPRI);
              ev_signal_start (EV_A_ &childev);
              ev_unref (EV_A); /* child watcher should not keep loop alive */
    #endif
            }
          else
            ev_default_loop_ptr = 0;
        }
    
      return ev_default_loop_ptr;
    }
    
    void
    ev_loop_fork (EV_P) EV_THROW
    {
      postfork = 1;
    }
    
    /*****************************************************************************/
    
    void
    ev_invoke (EV_P_ void *w, int revents)
    {
      EV_CB_INVOKE ((W)w, revents);
    }
    
    unsigned int
    ev_pending_count (EV_P) EV_THROW
    {
      int pri;
      unsigned int count = 0;
    
      for (pri = NUMPRI; pri--; )
        count += pendingcnt [pri];
    
      return count;
    }
    
    void noinline
    ev_invoke_pending (EV_P)
    {
      pendingpri = NUMPRI;
    
      while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
        {
          --pendingpri;
    
          while (pendingcnt [pendingpri])
            {
              ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
    
              p->w->pending = 0;
              EV_CB_INVOKE (p->w, p->events);
              EV_FREQUENT_CHECK;
            }
        }
    }
    
    #if EV_IDLE_ENABLE
    /* make idle watchers pending. this handles the "call-idle */
    /* only when higher priorities are idle" logic */
    inline_size void
    idle_reify (EV_P)
    {
      if (expect_false (idleall))
        {
          int pri;
    
          for (pri = NUMPRI; pri--; )
            {
              if (pendingcnt [pri])
                break;
    
              if (idlecnt [pri])
                {
                  queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
                  break;
                }
            }
        }
    }
    #endif
    
    /* make timers pending */
    inline_size void
    timers_reify (EV_P)
    {
      EV_FREQUENT_CHECK;
    
      if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
        {
          do
            {
              ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
    
              /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
    
              /* first reschedule or stop timer */
              if (w->repeat)
                {
                  ev_at (w) += w->repeat;
                  if (ev_at (w) < mn_now)
                    ev_at (w) = mn_now;
    
                  assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
    
                  ANHE_at_cache (timers [HEAP0]);
                  downheap (timers, timercnt, HEAP0);
                }
              else
                ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
    
              EV_FREQUENT_CHECK;
              feed_reverse (EV_A_ (W)w);
            }
          while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
    
          feed_reverse_done (EV_A_ EV_TIMER);
        }
    }
    
    #if EV_PERIODIC_ENABLE
    
    static void noinline
    periodic_recalc (EV_P_ ev_periodic *w)
    {
      ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
      ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
    
      /* the above almost always errs on the low side */
      while (at <= ev_rt_now)
        {
          ev_tstamp nat = at + w->interval;
    
          /* when resolution fails us, we use ev_rt_now */
          if (expect_false (nat == at))
            {
              at = ev_rt_now;
              break;
            }
    
          at = nat;
        }
    
      ev_at (w) = at;
    }
    
    /* make periodics pending */
    inline_size void
    periodics_reify (EV_P)
    {
      EV_FREQUENT_CHECK;
    
      while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
        {
          do
            {
              ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
    
              /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
    
              /* first reschedule or stop timer */
              if (w->reschedule_cb)
                {
                  ev_at (w) = w->reschedule_cb (w, ev_rt_now);
    
                  assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
    
                  ANHE_at_cache (periodics [HEAP0]);
                  downheap (periodics, periodiccnt, HEAP0);
                }
              else if (w->interval)
                {
                  periodic_recalc (EV_A_ w);
                  ANHE_at_cache (periodics [HEAP0]);
                  downheap (periodics, periodiccnt, HEAP0);
                }
              else
                ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
    
              EV_FREQUENT_CHECK;
              feed_reverse (EV_A_ (W)w);
            }
          while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
    
          feed_reverse_done (EV_A_ EV_PERIODIC);
        }
    }
    
    /* simply recalculate all periodics */
    /* TODO: maybe ensure that at least one event happens when jumping forward? */
    static void noinline ecb_cold
    periodics_reschedule (EV_P)
    {
      int i;
    
      /* adjust periodics after time jump */
      for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
        {
          ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
    
          if (w->reschedule_cb)
            ev_at (w) = w->reschedule_cb (w, ev_rt_now);
          else if (w->interval)
            periodic_recalc (EV_A_ w);
    
          ANHE_at_cache (periodics [i]);
        }
    
      reheap (periodics, periodiccnt);
    }
    #endif
    
    /* adjust all timers by a given offset */
    static void noinline ecb_cold
    timers_reschedule (EV_P_ ev_tstamp adjust)
    {
      int i;
    
      for (i = 0; i < timercnt; ++i)
        {
          ANHE *he = timers + i + HEAP0;
          ANHE_w (*he)->at += adjust;
          ANHE_at_cache (*he);
        }
    }
    
    /* fetch new monotonic and realtime times from the kernel */
    /* also detect if there was a timejump, and act accordingly */
    inline_speed void
    time_update (EV_P_ ev_tstamp max_block)
    {
    #if EV_USE_MONOTONIC
      if (expect_true (have_monotonic))
        {
          int i;
          ev_tstamp odiff = rtmn_diff;
    
          mn_now = get_clock ();
    
          /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
          /* interpolate in the meantime */
          if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
            {
              ev_rt_now = rtmn_diff + mn_now;
              return;
            }
    
          now_floor = mn_now;
          ev_rt_now = ev_time ();
    
          /* loop a few times, before making important decisions.
           * on the choice of "4": one iteration isn't enough,
           * in case we get preempted during the calls to
           * ev_time and get_clock. a second call is almost guaranteed
           * to succeed in that case, though. and looping a few more times
           * doesn't hurt either as we only do this on time-jumps or
           * in the unlikely event of having been preempted here.
           */
          for (i = 4; --i; )
            {
              ev_tstamp diff;
              rtmn_diff = ev_rt_now - mn_now;
    
              diff = odiff - rtmn_diff;
    
              if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
                return; /* all is well */
    
              ev_rt_now = ev_time ();
              mn_now    = get_clock ();
              now_floor = mn_now;
            }
    
          /* no timer adjustment, as the monotonic clock doesn't jump */
          /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
    # if EV_PERIODIC_ENABLE
          periodics_reschedule (EV_A);
    # endif
        }
      else
    #endif
        {
          ev_rt_now = ev_time ();
    
          if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
            {
              /* adjust timers. this is easy, as the offset is the same for all of them */
              timers_reschedule (EV_A_ ev_rt_now - mn_now);
    #if EV_PERIODIC_ENABLE
              periodics_reschedule (EV_A);
    #endif
            }
    
          mn_now = ev_rt_now;
        }
    }
    
    int
    ev_run (EV_P_ int flags)
    {
    #if EV_FEATURE_API
      ++loop_depth;
    #endif
    
      assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
    
      loop_done = EVBREAK_CANCEL;
    
      EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
    
      do
        {
    #if EV_VERIFY >= 2
          ev_verify (EV_A);
    #endif
    
    #ifndef _WIN32
          if (expect_false (curpid)) /* penalise the forking check even more */
            if (expect_false (getpid () != curpid))
              {
                curpid = getpid ();
                postfork = 1;
              }
    #endif
    
    #if EV_FORK_ENABLE
          /* we might have forked, so queue fork handlers */
          if (expect_false (postfork))
            if (forkcnt)
              {
                queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
                EV_INVOKE_PENDING;
              }
    #endif
    
    #if EV_PREPARE_ENABLE
          /* queue prepare watchers (and execute them) */
          if (expect_false (preparecnt))
            {
              queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
              EV_INVOKE_PENDING;
            }
    #endif
    
          if (expect_false (loop_done))
            break;
    
          /* we might have forked, so reify kernel state if necessary */
          if (expect_false (postfork))
            loop_fork (EV_A);
    
          /* update fd-related kernel structures */
          fd_reify (EV_A);
    
          /* calculate blocking time */
          {
            ev_tstamp waittime  = 0.;
            ev_tstamp sleeptime = 0.;
    
            /* remember old timestamp for io_blocktime calculation */
            ev_tstamp prev_mn_now = mn_now;
    
            /* update time to cancel out callback processing overhead */
            time_update (EV_A_ 1e100);
    
            /* from now on, we want a pipe-wake-up */
            pipe_write_wanted = 1;
    
            ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
    
            if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
              {
                waittime = MAX_BLOCKTIME;
    
                if (timercnt)
                  {
                    ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
                    if (waittime > to) waittime = to;
                  }
    
    #if EV_PERIODIC_ENABLE
                if (periodiccnt)
                  {
                    ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
                    if (waittime > to) waittime = to;
                  }
    #endif
    
                /* don't let timeouts decrease the waittime below timeout_blocktime */
                if (expect_false (waittime < timeout_blocktime))
                  waittime = timeout_blocktime;
    
                /* at this point, we NEED to wait, so we have to ensure */
                /* to pass a minimum nonzero value to the backend */
                if (expect_false (waittime < backend_mintime))
                  waittime = backend_mintime;
    
                /* extra check because io_blocktime is commonly 0 */
                if (expect_false (io_blocktime))
                  {
                    sleeptime = io_blocktime - (mn_now - prev_mn_now);
    
                    if (sleeptime > waittime - backend_mintime)
                      sleeptime = waittime - backend_mintime;
    
                    if (expect_true (sleeptime > 0.))
                      {
                        ev_sleep (sleeptime);
                        waittime -= sleeptime;
                      }
                  }
              }
    
    #if EV_FEATURE_API
            ++loop_count;
    #endif
            assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
            backend_poll (EV_A_ waittime);
            assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
    
            pipe_write_wanted = 0; /* just an optimisation, no fence needed */
    
            ECB_MEMORY_FENCE_ACQUIRE;
            if (pipe_write_skipped)
              {
                assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
                ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
              }
    
    
            /* update ev_rt_now, do magic */
            time_update (EV_A_ waittime + sleeptime);
          }
    
          /* queue pending timers and reschedule them */
          timers_reify (EV_A); /* relative timers called last */
    #if EV_PERIODIC_ENABLE
          periodics_reify (EV_A); /* absolute timers called first */
    #endif
    
    #if EV_IDLE_ENABLE
          /* queue idle watchers unless other events are pending */
          idle_reify (EV_A);
    #endif
    
    #if EV_CHECK_ENABLE
          /* queue check watchers, to be executed first */
          if (expect_false (checkcnt))
            queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
    #endif
    
          EV_INVOKE_PENDING;
        }
      while (expect_true (
        activecnt
        && !loop_done
        && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
      ));
    
      if (loop_done == EVBREAK_ONE)
        loop_done = EVBREAK_CANCEL;
    
    #if EV_FEATURE_API
      --loop_depth;
    #endif
    
      return activecnt;
    }
    
    void
    ev_break (EV_P_ int how) EV_THROW
    {
      loop_done = how;
    }
    
    void
    ev_ref (EV_P) EV_THROW
    {
      ++activecnt;
    }
    
    void
    ev_unref (EV_P) EV_THROW
    {
      --activecnt;
    }
    
    void
    ev_now_update (EV_P) EV_THROW
    {
      time_update (EV_A_ 1e100);
    }
    
    void
    ev_suspend (EV_P) EV_THROW
    {
      ev_now_update (EV_A);
    }
    
    void
    ev_resume (EV_P) EV_THROW
    {
      ev_tstamp mn_prev = mn_now;
    
      ev_now_update (EV_A);
      timers_reschedule (EV_A_ mn_now - mn_prev);
    #if EV_PERIODIC_ENABLE
      /* TODO: really do this? */
      periodics_reschedule (EV_A);
    #endif
    }
    
    /*****************************************************************************/
    /* singly-linked list management, used when the expected list length is short */
    
    inline_size void
    wlist_add (WL *head, WL elem)
    {
      elem->next = *head;
      *head = elem;
    }
    
    inline_size void
    wlist_del (WL *head, WL elem)
    {
      while (*head)
        {
          if (expect_true (*head == elem))
            {
              *head = elem->next;
              break;
            }
    
          head = &(*head)->next;
        }
    }
    
    /* internal, faster, version of ev_clear_pending */
    inline_speed void
    clear_pending (EV_P_ W w)
    {
      if (w->pending)
        {
          pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
          w->pending = 0;
        }
    }
    
    int
    ev_clear_pending (EV_P_ void *w) EV_THROW
    {
      W w_ = (W)w;
      int pending = w_->pending;
    
      if (expect_true (pending))
        {
          ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
          p->w = (W)&pending_w;
          w_->pending = 0;
          return p->events;
        }
      else
        return 0;
    }
    
    inline_size void
    pri_adjust (EV_P_ W w)
    {
      int pri = ev_priority (w);
      pri = pri < EV_MINPRI ? EV_MINPRI : pri;
      pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
      ev_set_priority (w, pri);
    }
    
    inline_speed void
    ev_start (EV_P_ W w, int active)
    {
      pri_adjust (EV_A_ w);
      w->active = active;
      ev_ref (EV_A);
    }
    
    inline_size void
    ev_stop (EV_P_ W w)
    {
      ev_unref (EV_A);
      w->active = 0;
    }
    
    /*****************************************************************************/
    
    void noinline
    ev_io_start (EV_P_ ev_io *w) EV_THROW
    {
      int fd = w->fd;
    
      if (expect_false (ev_is_active (w)))
        return;
    
      assert (("libev: ev_io_start called with negative fd", fd >= 0));
      assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
    
      EV_FREQUENT_CHECK;
    
      ev_start (EV_A_ (W)w, 1);
      array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
      wlist_add (&anfds[fd].head, (WL)w);
    
      /* common bug, apparently */
      assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
    
      fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
      w->events &= ~EV__IOFDSET;
    
      EV_FREQUENT_CHECK;
    }
    
    void noinline
    ev_io_stop (EV_P_ ev_io *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
    
      EV_FREQUENT_CHECK;
    
      wlist_del (&anfds[w->fd].head, (WL)w);
      ev_stop (EV_A_ (W)w);
    
      fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
    
      EV_FREQUENT_CHECK;
    }
    
    void noinline
    ev_timer_start (EV_P_ ev_timer *w) EV_THROW
    {
      if (expect_false (ev_is_active (w)))
        return;
    
      ev_at (w) += mn_now;
    
      assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
    
      EV_FREQUENT_CHECK;
    
      ++timercnt;
      ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
      array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
      ANHE_w (timers [ev_active (w)]) = (WT)w;
      ANHE_at_cache (timers [ev_active (w)]);
      upheap (timers, ev_active (w));
    
      EV_FREQUENT_CHECK;
    
      /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
    }
    
    void noinline
    ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      {
        int active = ev_active (w);
    
        assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
    
        --timercnt;
    
        if (expect_true (active < timercnt + HEAP0))
          {
            timers [active] = timers [timercnt + HEAP0];
            adjustheap (timers, timercnt, active);
          }
      }
    
      ev_at (w) -= mn_now;
    
      ev_stop (EV_A_ (W)w);
    
      EV_FREQUENT_CHECK;
    }
    
    void noinline
    ev_timer_again (EV_P_ ev_timer *w) EV_THROW
    {
      EV_FREQUENT_CHECK;
    
      clear_pending (EV_A_ (W)w);
    
      if (ev_is_active (w))
        {
          if (w->repeat)
            {
              ev_at (w) = mn_now + w->repeat;
              ANHE_at_cache (timers [ev_active (w)]);
              adjustheap (timers, timercnt, ev_active (w));
            }
          else
            ev_timer_stop (EV_A_ w);
        }
      else if (w->repeat)
        {
          ev_at (w) = w->repeat;
          ev_timer_start (EV_A_ w);
        }
    
      EV_FREQUENT_CHECK;
    }
    
    ev_tstamp
    ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
    {
      return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
    }
    
    #if EV_PERIODIC_ENABLE
    void noinline
    ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
    {
      if (expect_false (ev_is_active (w)))
        return;
    
      if (w->reschedule_cb)
        ev_at (w) = w->reschedule_cb (w, ev_rt_now);
      else if (w->interval)
        {
          assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
          periodic_recalc (EV_A_ w);
        }
      else
        ev_at (w) = w->offset;
    
      EV_FREQUENT_CHECK;
    
      ++periodiccnt;
      ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
      array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
      ANHE_w (periodics [ev_active (w)]) = (WT)w;
      ANHE_at_cache (periodics [ev_active (w)]);
      upheap (periodics, ev_active (w));
    
      EV_FREQUENT_CHECK;
    
      /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
    }
    
    void noinline
    ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      {
        int active = ev_active (w);
    
        assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
    
        --periodiccnt;
    
        if (expect_true (active < periodiccnt + HEAP0))
          {
            periodics [active] = periodics [periodiccnt + HEAP0];
            adjustheap (periodics, periodiccnt, active);
          }
      }
    
      ev_stop (EV_A_ (W)w);
    
      EV_FREQUENT_CHECK;
    }
    
    void noinline
    ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
    {
      /* TODO: use adjustheap and recalculation */
      ev_periodic_stop (EV_A_ w);
      ev_periodic_start (EV_A_ w);
    }
    #endif
    
    #ifndef SA_RESTART
    # define SA_RESTART 0
    #endif
    
    #if EV_SIGNAL_ENABLE
    
    void noinline
    ev_signal_start (EV_P_ ev_signal *w) EV_THROW
    {
      if (expect_false (ev_is_active (w)))
        return;
    
      assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
    
    #if EV_MULTIPLICITY
      assert (("libev: a signal must not be attached to two different loops",
               !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
    
      signals [w->signum - 1].loop = EV_A;
      ECB_MEMORY_FENCE_RELEASE;
    #endif
    
      EV_FREQUENT_CHECK;
    
    #if EV_USE_SIGNALFD
      if (sigfd == -2)
        {
          sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
          if (sigfd < 0 && errno == EINVAL)
            sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
    
          if (sigfd >= 0)
            {
              fd_intern (sigfd); /* doing it twice will not hurt */
    
              sigemptyset (&sigfd_set);
    
              ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
              ev_set_priority (&sigfd_w, EV_MAXPRI);
              ev_io_start (EV_A_ &sigfd_w);
              ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
            }
        }
    
      if (sigfd >= 0)
        {
          /* TODO: check .head */
          sigaddset (&sigfd_set, w->signum);
          sigprocmask (SIG_BLOCK, &sigfd_set, 0);
    
          signalfd (sigfd, &sigfd_set, 0);
        }
    #endif
    
      ev_start (EV_A_ (W)w, 1);
      wlist_add (&signals [w->signum - 1].head, (WL)w);
    
      if (!((WL)w)->next)
    # if EV_USE_SIGNALFD
        if (sigfd < 0) /*TODO*/
    # endif
          {
    # ifdef _WIN32
            evpipe_init (EV_A);
    
            signal (w->signum, ev_sighandler);
    # else
            struct sigaction sa;
    
            evpipe_init (EV_A);
    
            sa.sa_handler = ev_sighandler;
            sigfillset (&sa.sa_mask);
            sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
            sigaction (w->signum, &sa, 0);
    
            if (origflags & EVFLAG_NOSIGMASK)
              {
                sigemptyset (&sa.sa_mask);
                sigaddset (&sa.sa_mask, w->signum);
                sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
              }
    #endif
          }
    
      EV_FREQUENT_CHECK;
    }
    
    void noinline
    ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      wlist_del (&signals [w->signum - 1].head, (WL)w);
      ev_stop (EV_A_ (W)w);
    
      if (!signals [w->signum - 1].head)
        {
    #if EV_MULTIPLICITY
          signals [w->signum - 1].loop = 0; /* unattach from signal */
    #endif
    #if EV_USE_SIGNALFD
          if (sigfd >= 0)
            {
              sigset_t ss;
    
              sigemptyset (&ss);
              sigaddset (&ss, w->signum);
              sigdelset (&sigfd_set, w->signum);
    
              signalfd (sigfd, &sigfd_set, 0);
              sigprocmask (SIG_UNBLOCK, &ss, 0);
            }
          else
    #endif
            signal (w->signum, SIG_DFL);
        }
    
      EV_FREQUENT_CHECK;
    }
    
    #endif
    
    #if EV_CHILD_ENABLE
    
    void
    ev_child_start (EV_P_ ev_child *w) EV_THROW
    {
    #if EV_MULTIPLICITY
      assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
    #endif
      if (expect_false (ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      ev_start (EV_A_ (W)w, 1);
      wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
    
      EV_FREQUENT_CHECK;
    }
    
    void
    ev_child_stop (EV_P_ ev_child *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
      ev_stop (EV_A_ (W)w);
    
      EV_FREQUENT_CHECK;
    }
    
    #endif
    
    #if EV_STAT_ENABLE
    
    # ifdef _WIN32
    #  undef lstat
    #  define lstat(a,b) _stati64 (a,b)
    # endif
    
    #define DEF_STAT_INTERVAL  5.0074891
    #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
    #define MIN_STAT_INTERVAL  0.1074891
    
    static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
    
    #if EV_USE_INOTIFY
    
    /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
    # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
    
    static void noinline
    infy_add (EV_P_ ev_stat *w)
    {
      w->wd = inotify_add_watch (fs_fd, w->path,
                                 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
                                 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
                                 | IN_DONT_FOLLOW | IN_MASK_ADD);
    
      if (w->wd >= 0)
        {
          struct statfs sfs;
    
          /* now local changes will be tracked by inotify, but remote changes won't */
          /* unless the filesystem is known to be local, we therefore still poll */
          /* also do poll on <2.6.25, but with normal frequency */
    
          if (!fs_2625)
            w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
          else if (!statfs (w->path, &sfs)
                   && (sfs.f_type == 0x1373 /* devfs */
                       || sfs.f_type == 0x4006 /* fat */
                       || sfs.f_type == 0x4d44 /* msdos */
                       || sfs.f_type == 0xEF53 /* ext2/3 */
                       || sfs.f_type == 0x72b6 /* jffs2 */
                       || sfs.f_type == 0x858458f6 /* ramfs */
                       || sfs.f_type == 0x5346544e /* ntfs */
                       || sfs.f_type == 0x3153464a /* jfs */
                       || sfs.f_type == 0x9123683e /* btrfs */
                       || sfs.f_type == 0x52654973 /* reiser3 */
                       || sfs.f_type == 0x01021994 /* tmpfs */
                       || sfs.f_type == 0x58465342 /* xfs */))
            w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
          else
            w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
        }
      else
        {
          /* can't use inotify, continue to stat */
          w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
    
          /* if path is not there, monitor some parent directory for speedup hints */
          /* note that exceeding the hardcoded path limit is not a correctness issue, */
          /* but an efficiency issue only */
          if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
            {
              char path [4096];
              strcpy (path, w->path);
    
              do
                {
                  int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
                           | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
    
                  char *pend = strrchr (path, '/');
    
                  if (!pend || pend == path)
                    break;
    
                  *pend = 0;
                  w->wd = inotify_add_watch (fs_fd, path, mask);
                }
              while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
            }
        }
    
      if (w->wd >= 0)
        wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
    
      /* now re-arm timer, if required */
      if (ev_is_active (&w->timer)) ev_ref (EV_A);
      ev_timer_again (EV_A_ &w->timer);
      if (ev_is_active (&w->timer)) ev_unref (EV_A);
    }
    
    static void noinline
    infy_del (EV_P_ ev_stat *w)
    {
      int slot;
      int wd = w->wd;
    
      if (wd < 0)
        return;
    
      w->wd = -2;
      slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
      wlist_del (&fs_hash [slot].head, (WL)w);
    
      /* remove this watcher, if others are watching it, they will rearm */
      inotify_rm_watch (fs_fd, wd);
    }
    
    static void noinline
    infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
    {
      if (slot < 0)
        /* overflow, need to check for all hash slots */
        for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
          infy_wd (EV_A_ slot, wd, ev);
      else
        {
          WL w_;
    
          for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
            {
              ev_stat *w = (ev_stat *)w_;
              w_ = w_->next; /* lets us remove this watcher and all before it */
    
              if (w->wd == wd || wd == -1)
                {
                  if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
                    {
                      wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
                      w->wd = -1;
                      infy_add (EV_A_ w); /* re-add, no matter what */
                    }
    
                  stat_timer_cb (EV_A_ &w->timer, 0);
                }
            }
        }
    }
    
    static void
    infy_cb (EV_P_ ev_io *w, int revents)
    {
      char buf [EV_INOTIFY_BUFSIZE];
      int ofs;
      int len = read (fs_fd, buf, sizeof (buf));
    
      for (ofs = 0; ofs < len; )
        {
          struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
          infy_wd (EV_A_ ev->wd, ev->wd, ev);
          ofs += sizeof (struct inotify_event) + ev->len;
        }
    }
    
    inline_size void ecb_cold
    ev_check_2625 (EV_P)
    {
      /* kernels < 2.6.25 are borked
       * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
       */
      if (ev_linux_version () < 0x020619)
        return;
    
      fs_2625 = 1;
    }
    
    inline_size int
    infy_newfd (void)
    {
    #if defined IN_CLOEXEC && defined IN_NONBLOCK
      int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
      if (fd >= 0)
        return fd;
    #endif
      return inotify_init ();
    }
    
    inline_size void
    infy_init (EV_P)
    {
      if (fs_fd != -2)
        return;
    
      fs_fd = -1;
    
      ev_check_2625 (EV_A);
    
      fs_fd = infy_newfd ();
    
      if (fs_fd >= 0)
        {
          fd_intern (fs_fd);
          ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
          ev_set_priority (&fs_w, EV_MAXPRI);
          ev_io_start (EV_A_ &fs_w);
          ev_unref (EV_A);
        }
    }
    
    inline_size void
    infy_fork (EV_P)
    {
      int slot;
    
      if (fs_fd < 0)
        return;
    
      ev_ref (EV_A);
      ev_io_stop (EV_A_ &fs_w);
      close (fs_fd);
      fs_fd = infy_newfd ();
    
      if (fs_fd >= 0)
        {
          fd_intern (fs_fd);
          ev_io_set (&fs_w, fs_fd, EV_READ);
          ev_io_start (EV_A_ &fs_w);
          ev_unref (EV_A);
        }
    
      for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
        {
          WL w_ = fs_hash [slot].head;
          fs_hash [slot].head = 0;
    
          while (w_)
            {
              ev_stat *w = (ev_stat *)w_;
              w_ = w_->next; /* lets us add this watcher */
    
              w->wd = -1;
    
              if (fs_fd >= 0)
                infy_add (EV_A_ w); /* re-add, no matter what */
              else
                {
                  w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
                  if (ev_is_active (&w->timer)) ev_ref (EV_A);
                  ev_timer_again (EV_A_ &w->timer);
                  if (ev_is_active (&w->timer)) ev_unref (EV_A);
                }
            }
        }
    }
    
    #endif
    
    #ifdef _WIN32
    # define EV_LSTAT(p,b) _stati64 (p, b)
    #else
    # define EV_LSTAT(p,b) lstat (p, b)
    #endif
    
    void
    ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
    {
      if (lstat (w->path, &w->attr) < 0)
        w->attr.st_nlink = 0;
      else if (!w->attr.st_nlink)
        w->attr.st_nlink = 1;
    }
    
    static void noinline
    stat_timer_cb (EV_P_ ev_timer *w_, int revents)
    {
      ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
    
      ev_statdata prev = w->attr;
      ev_stat_stat (EV_A_ w);
    
      /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
      if (
        prev.st_dev      != w->attr.st_dev
        || prev.st_ino   != w->attr.st_ino
        || prev.st_mode  != w->attr.st_mode
        || prev.st_nlink != w->attr.st_nlink
        || prev.st_uid   != w->attr.st_uid
        || prev.st_gid   != w->attr.st_gid
        || prev.st_rdev  != w->attr.st_rdev
        || prev.st_size  != w->attr.st_size
        || prev.st_atime != w->attr.st_atime
        || prev.st_mtime != w->attr.st_mtime
        || prev.st_ctime != w->attr.st_ctime
      ) {
          /* we only update w->prev on actual differences */
          /* in case we test more often than invoke the callback, */
          /* to ensure that prev is always different to attr */
          w->prev = prev;
    
          #if EV_USE_INOTIFY
            if (fs_fd >= 0)
              {
                infy_del (EV_A_ w);
                infy_add (EV_A_ w);
                ev_stat_stat (EV_A_ w); /* avoid race... */
              }
          #endif
    
          ev_feed_event (EV_A_ w, EV_STAT);
        }
    }
    
    void
    ev_stat_start (EV_P_ ev_stat *w) EV_THROW
    {
      if (expect_false (ev_is_active (w)))
        return;
    
      ev_stat_stat (EV_A_ w);
    
      if (w->interval < MIN_STAT_INTERVAL && w->interval)
        w->interval = MIN_STAT_INTERVAL;
    
      ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
      ev_set_priority (&w->timer, ev_priority (w));
    
    #if EV_USE_INOTIFY
      infy_init (EV_A);
    
      if (fs_fd >= 0)
        infy_add (EV_A_ w);
      else
    #endif
        {
          ev_timer_again (EV_A_ &w->timer);
          ev_unref (EV_A);
        }
    
      ev_start (EV_A_ (W)w, 1);
    
      EV_FREQUENT_CHECK;
    }
    
    void
    ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
    #if EV_USE_INOTIFY
      infy_del (EV_A_ w);
    #endif
    
      if (ev_is_active (&w->timer))
        {
          ev_ref (EV_A);
          ev_timer_stop (EV_A_ &w->timer);
        }
    
      ev_stop (EV_A_ (W)w);
    
      EV_FREQUENT_CHECK;
    }
    #endif
    
    #if EV_IDLE_ENABLE
    void
    ev_idle_start (EV_P_ ev_idle *w) EV_THROW
    {
      if (expect_false (ev_is_active (w)))
        return;
    
      pri_adjust (EV_A_ (W)w);
    
      EV_FREQUENT_CHECK;
    
      {
        int active = ++idlecnt [ABSPRI (w)];
    
        ++idleall;
        ev_start (EV_A_ (W)w, active);
    
        array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
        idles [ABSPRI (w)][active - 1] = w;
      }
    
      EV_FREQUENT_CHECK;
    }
    
    void
    ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      {
        int active = ev_active (w);
    
        idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
        ev_active (idles [ABSPRI (w)][active - 1]) = active;
    
        ev_stop (EV_A_ (W)w);
        --idleall;
      }
    
      EV_FREQUENT_CHECK;
    }
    #endif
    
    #if EV_PREPARE_ENABLE
    void
    ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
    {
      if (expect_false (ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      ev_start (EV_A_ (W)w, ++preparecnt);
      array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
      prepares [preparecnt - 1] = w;
    
      EV_FREQUENT_CHECK;
    }
    
    void
    ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      {
        int active = ev_active (w);
    
        prepares [active - 1] = prepares [--preparecnt];
        ev_active (prepares [active - 1]) = active;
      }
    
      ev_stop (EV_A_ (W)w);
    
      EV_FREQUENT_CHECK;
    }
    #endif
    
    #if EV_CHECK_ENABLE
    void
    ev_check_start (EV_P_ ev_check *w) EV_THROW
    {
      if (expect_false (ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      ev_start (EV_A_ (W)w, ++checkcnt);
      array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
      checks [checkcnt - 1] = w;
    
      EV_FREQUENT_CHECK;
    }
    
    void
    ev_check_stop (EV_P_ ev_check *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      {
        int active = ev_active (w);
    
        checks [active - 1] = checks [--checkcnt];
        ev_active (checks [active - 1]) = active;
      }
    
      ev_stop (EV_A_ (W)w);
    
      EV_FREQUENT_CHECK;
    }
    #endif
    
    #if EV_EMBED_ENABLE
    void noinline
    ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
    {
      ev_run (w->other, EVRUN_NOWAIT);
    }
    
    static void
    embed_io_cb (EV_P_ ev_io *io, int revents)
    {
      ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
    
      if (ev_cb (w))
        ev_feed_event (EV_A_ (W)w, EV_EMBED);
      else
        ev_run (w->other, EVRUN_NOWAIT);
    }
    
    static void
    embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
    {
      ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
    
      {
        EV_P = w->other;
    
        while (fdchangecnt)
          {
            fd_reify (EV_A);
            ev_run (EV_A_ EVRUN_NOWAIT);
          }
      }
    }
    
    static void
    embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
    {
      ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
    
      ev_embed_stop (EV_A_ w);
    
      {
        EV_P = w->other;
    
        ev_loop_fork (EV_A);
        ev_run (EV_A_ EVRUN_NOWAIT);
      }
    
      ev_embed_start (EV_A_ w);
    }
    
    #if 0
    static void
    embed_idle_cb (EV_P_ ev_idle *idle, int revents)
    {
      ev_idle_stop (EV_A_ idle);
    }
    #endif
    
    void
    ev_embed_start (EV_P_ ev_embed *w) EV_THROW
    {
      if (expect_false (ev_is_active (w)))
        return;
    
      {
        EV_P = w->other;
        assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
        ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
      }
    
      EV_FREQUENT_CHECK;
    
      ev_set_priority (&w->io, ev_priority (w));
      ev_io_start (EV_A_ &w->io);
    
      ev_prepare_init (&w->prepare, embed_prepare_cb);
      ev_set_priority (&w->prepare, EV_MINPRI);
      ev_prepare_start (EV_A_ &w->prepare);
    
      ev_fork_init (&w->fork, embed_fork_cb);
      ev_fork_start (EV_A_ &w->fork);
    
      /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
    
      ev_start (EV_A_ (W)w, 1);
    
      EV_FREQUENT_CHECK;
    }
    
    void
    ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      ev_io_stop      (EV_A_ &w->io);
      ev_prepare_stop (EV_A_ &w->prepare);
      ev_fork_stop    (EV_A_ &w->fork);
    
      ev_stop (EV_A_ (W)w);
    
      EV_FREQUENT_CHECK;
    }
    #endif
    
    #if EV_FORK_ENABLE
    void
    ev_fork_start (EV_P_ ev_fork *w) EV_THROW
    {
      if (expect_false (ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      ev_start (EV_A_ (W)w, ++forkcnt);
      array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
      forks [forkcnt - 1] = w;
    
      EV_FREQUENT_CHECK;
    }
    
    void
    ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      {
        int active = ev_active (w);
    
        forks [active - 1] = forks [--forkcnt];
        ev_active (forks [active - 1]) = active;
      }
    
      ev_stop (EV_A_ (W)w);
    
      EV_FREQUENT_CHECK;
    }
    #endif
    
    #if EV_CLEANUP_ENABLE
    void
    ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
    {
      if (expect_false (ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      ev_start (EV_A_ (W)w, ++cleanupcnt);
      array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
      cleanups [cleanupcnt - 1] = w;
    
      /* cleanup watchers should never keep a refcount on the loop */
      ev_unref (EV_A);
      EV_FREQUENT_CHECK;
    }
    
    void
    ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
      ev_ref (EV_A);
    
      {
        int active = ev_active (w);
    
        cleanups [active - 1] = cleanups [--cleanupcnt];
        ev_active (cleanups [active - 1]) = active;
      }
    
      ev_stop (EV_A_ (W)w);
    
      EV_FREQUENT_CHECK;
    }
    #endif
    
    #if EV_ASYNC_ENABLE
    void
    ev_async_start (EV_P_ ev_async *w) EV_THROW
    {
      if (expect_false (ev_is_active (w)))
        return;
    
      w->sent = 0;
    
      evpipe_init (EV_A);
    
      EV_FREQUENT_CHECK;
    
      ev_start (EV_A_ (W)w, ++asynccnt);
      array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
      asyncs [asynccnt - 1] = w;
    
      EV_FREQUENT_CHECK;
    }
    
    void
    ev_async_stop (EV_P_ ev_async *w) EV_THROW
    {
      clear_pending (EV_A_ (W)w);
      if (expect_false (!ev_is_active (w)))
        return;
    
      EV_FREQUENT_CHECK;
    
      {
        int active = ev_active (w);
    
        asyncs [active - 1] = asyncs [--asynccnt];
        ev_active (asyncs [active - 1]) = active;
      }
    
      ev_stop (EV_A_ (W)w);
    
      EV_FREQUENT_CHECK;
    }
    
    void
    ev_async_send (EV_P_ ev_async *w) EV_THROW
    {
      w->sent = 1;
      evpipe_write (EV_A_ &async_pending);
    }
    #endif
    
    /*****************************************************************************/
    
    struct ev_once
    {
      ev_io io;
      ev_timer to;
      void (*cb)(int revents, void *arg);
      void *arg;
    };
    
    static void
    once_cb (EV_P_ struct ev_once *once, int revents)
    {
      void (*cb)(int revents, void *arg) = once->cb;
      void *arg = once->arg;
    
      ev_io_stop    (EV_A_ &once->io);
      ev_timer_stop (EV_A_ &once->to);
      ev_free (once);
    
      cb (revents, arg);
    }
    
    static void
    once_cb_io (EV_P_ ev_io *w, int revents)
    {
      struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
    
      once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
    }
    
    static void
    once_cb_to (EV_P_ ev_timer *w, int revents)
    {
      struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
    
      once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
    }
    
    void
    ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
    {
      struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
    
      if (expect_false (!once))
        {
          cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
          return;
        }
    
      once->cb  = cb;
      once->arg = arg;
    
      ev_init (&once->io, once_cb_io);
      if (fd >= 0)
        {
          ev_io_set (&once->io, fd, events);
          ev_io_start (EV_A_ &once->io);
        }
    
      ev_init (&once->to, once_cb_to);
      if (timeout >= 0.)
        {
          ev_timer_set (&once->to, timeout, 0.);
          ev_timer_start (EV_A_ &once->to);
        }
    }
    
    /*****************************************************************************/
    
    #if EV_WALK_ENABLE
    void ecb_cold
    ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
    {
      int i, j;
      ev_watcher_list *wl, *wn;
    
      if (types & (EV_IO | EV_EMBED))
        for (i = 0; i < anfdmax; ++i)
          for (wl = anfds [i].head; wl; )
            {
              wn = wl->next;
    
    #if EV_EMBED_ENABLE
              if (ev_cb ((ev_io *)wl) == embed_io_cb)
                {
                  if (types & EV_EMBED)
                    cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
                }
              else
    #endif
    #if EV_USE_INOTIFY
              if (ev_cb ((ev_io *)wl) == infy_cb)
                ;
              else
    #endif
              if ((ev_io *)wl != &pipe_w)
                if (types & EV_IO)
                  cb (EV_A_ EV_IO, wl);
    
              wl = wn;
            }
    
      if (types & (EV_TIMER | EV_STAT))
        for (i = timercnt + HEAP0; i-- > HEAP0; )
    #if EV_STAT_ENABLE
          /*TODO: timer is not always active*/
          if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
            {
              if (types & EV_STAT)
                cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
            }
          else
    #endif
          if (types & EV_TIMER)
            cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
    
    #if EV_PERIODIC_ENABLE
      if (types & EV_PERIODIC)
        for (i = periodiccnt + HEAP0; i-- > HEAP0; )
          cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
    #endif
    
    #if EV_IDLE_ENABLE
      if (types & EV_IDLE)
        for (j = NUMPRI; j--; )
          for (i = idlecnt [j]; i--; )
            cb (EV_A_ EV_IDLE, idles [j][i]);
    #endif
    
    #if EV_FORK_ENABLE
      if (types & EV_FORK)
        for (i = forkcnt; i--; )
          if (ev_cb (forks [i]) != embed_fork_cb)
            cb (EV_A_ EV_FORK, forks [i]);
    #endif
    
    #if EV_ASYNC_ENABLE
      if (types & EV_ASYNC)
        for (i = asynccnt; i--; )
          cb (EV_A_ EV_ASYNC, asyncs [i]);
    #endif
    
    #if EV_PREPARE_ENABLE
      if (types & EV_PREPARE)
        for (i = preparecnt; i--; )
    # if EV_EMBED_ENABLE
          if (ev_cb (prepares [i]) != embed_prepare_cb)
    # endif
            cb (EV_A_ EV_PREPARE, prepares [i]);
    #endif
    
    #if EV_CHECK_ENABLE
      if (types & EV_CHECK)
        for (i = checkcnt; i--; )
          cb (EV_A_ EV_CHECK, checks [i]);
    #endif
    
    #if EV_SIGNAL_ENABLE
      if (types & EV_SIGNAL)
        for (i = 0; i < EV_NSIG - 1; ++i)
          for (wl = signals [i].head; wl; )
            {
              wn = wl->next;
              cb (EV_A_ EV_SIGNAL, wl);
              wl = wn;
            }
    #endif
    
    #if EV_CHILD_ENABLE
      if (types & EV_CHILD)
        for (i = (EV_PID_HASHSIZE); i--; )
          for (wl = childs [i]; wl; )
            {
              wn = wl->next;
              cb (EV_A_ EV_CHILD, wl);
              wl = wn;
            }
    #endif
    /* EV_STAT     0x00001000 /* stat data changed */
    /* EV_EMBED    0x00010000 /* embedded event loop needs sweep */
    }
    #endif
    
    #if EV_MULTIPLICITY
      #include "ev_wrap.h"
    #endif
    

      ev.h:

    /* libev native API header*/
    
    #ifndef EV_H_
    #define EV_H_
    
    #ifdef __cplusplus
    # define EV_CPP(x) x
    #else
    # define EV_CPP(x)
    #endif
    
    #define EV_THROW EV_CPP(throw())
    
    EV_CPP(extern "C" {)
    
    /*****************************************************************************/
    
    /* pre-4.0 compatibility */
    #ifndef EV_COMPAT3
    # define EV_COMPAT3 1
    #endif
    
    #ifndef EV_FEATURES
    # if defined __OPTIMIZE_SIZE__
    #  define EV_FEATURES 0x7c
    # else
    #  define EV_FEATURES 0x7f
    # endif
    #endif
    
    #define EV_FEATURE_CODE     ((EV_FEATURES) &  1)
    #define EV_FEATURE_DATA     ((EV_FEATURES) &  2)
    #define EV_FEATURE_CONFIG   ((EV_FEATURES) &  4)
    #define EV_FEATURE_API      ((EV_FEATURES) &  8)
    #define EV_FEATURE_WATCHERS ((EV_FEATURES) & 16)
    #define EV_FEATURE_BACKENDS ((EV_FEATURES) & 32)
    #define EV_FEATURE_OS       ((EV_FEATURES) & 64)
    
    /* these priorities are inclusive, higher priorities will be invoked earlier */
    #ifndef EV_MINPRI
    # define EV_MINPRI (EV_FEATURE_CONFIG ? -2 : 0)
    #endif
    #ifndef EV_MAXPRI
    # define EV_MAXPRI (EV_FEATURE_CONFIG ? +2 : 0)
    #endif
    
    #ifndef EV_MULTIPLICITY
    # define EV_MULTIPLICITY EV_FEATURE_CONFIG
    #endif
    
    #ifndef EV_PERIODIC_ENABLE
    # define EV_PERIODIC_ENABLE EV_FEATURE_WATCHERS
    #endif
    
    #ifndef EV_STAT_ENABLE
    # define EV_STAT_ENABLE EV_FEATURE_WATCHERS
    #endif
    
    #ifndef EV_PREPARE_ENABLE
    # define EV_PREPARE_ENABLE EV_FEATURE_WATCHERS
    #endif
    
    #ifndef EV_CHECK_ENABLE
    # define EV_CHECK_ENABLE EV_FEATURE_WATCHERS
    #endif
    
    #ifndef EV_IDLE_ENABLE
    # define EV_IDLE_ENABLE EV_FEATURE_WATCHERS
    #endif
    
    #ifndef EV_FORK_ENABLE
    # define EV_FORK_ENABLE EV_FEATURE_WATCHERS
    #endif
    
    #ifndef EV_CLEANUP_ENABLE
    # define EV_CLEANUP_ENABLE EV_FEATURE_WATCHERS
    #endif
    
    #ifndef EV_SIGNAL_ENABLE
    # define EV_SIGNAL_ENABLE EV_FEATURE_WATCHERS
    #endif
    
    #ifndef EV_CHILD_ENABLE
    # ifdef _WIN32
    #  define EV_CHILD_ENABLE 0
    # else
    #  define EV_CHILD_ENABLE EV_FEATURE_WATCHERS
    #endif
    #endif
    
    #ifndef EV_ASYNC_ENABLE
    # define EV_ASYNC_ENABLE EV_FEATURE_WATCHERS
    #endif
    
    #ifndef EV_EMBED_ENABLE
    # define EV_EMBED_ENABLE EV_FEATURE_WATCHERS
    #endif
    
    #ifndef EV_WALK_ENABLE
    # define EV_WALK_ENABLE 0 /* not yet */
    #endif
    
    /*****************************************************************************/
    
    #if EV_CHILD_ENABLE && !EV_SIGNAL_ENABLE
    # undef EV_SIGNAL_ENABLE
    # define EV_SIGNAL_ENABLE 1
    #endif
    
    /*****************************************************************************/
    
    typedef double ev_tstamp;
    
    #ifndef EV_ATOMIC_T
    # include <signal.h>
    # define EV_ATOMIC_T sig_atomic_t volatile
    #endif
    
    #if EV_STAT_ENABLE
    # ifdef _WIN32
    #  include <time.h>
    #  include <sys/types.h>
    # endif
    # include <sys/stat.h>
    #endif
    
    /* support multiple event loops? */
    #if EV_MULTIPLICITY
    struct ev_loop;
    # define EV_P  struct ev_loop *loop               /* a loop as sole parameter in a declaration */
    # define EV_P_ EV_P,                              /* a loop as first of multiple parameters */
    # define EV_A  loop                               /* a loop as sole argument to a function call */
    # define EV_A_ EV_A,                              /* a loop as first of multiple arguments */
    # define EV_DEFAULT_UC  ev_default_loop_uc_ ()    /* the default loop, if initialised, as sole arg */
    # define EV_DEFAULT_UC_ EV_DEFAULT_UC,            /* the default loop as first of multiple arguments */
    # define EV_DEFAULT  ev_default_loop (0)          /* the default loop as sole arg */
    # define EV_DEFAULT_ EV_DEFAULT,                  /* the default loop as first of multiple arguments */
    #else
    # define EV_P void
    # define EV_P_
    # define EV_A
    # define EV_A_
    # define EV_DEFAULT
    # define EV_DEFAULT_
    # define EV_DEFAULT_UC
    # define EV_DEFAULT_UC_
    # undef EV_EMBED_ENABLE
    #endif
    
    /* EV_INLINE is used for functions in header files */
    #if __STDC_VERSION__ >= 199901L || __GNUC__ >= 3
    # define EV_INLINE static inline
    #else
    # define EV_INLINE static
    #endif
    
    #ifdef EV_API_STATIC
    # define EV_API_DECL static
    #else
    # define EV_API_DECL extern
    #endif
    
    /* EV_PROTOTYPES can be used to switch of prototype declarations */
    #ifndef EV_PROTOTYPES
    # define EV_PROTOTYPES 1
    #endif
    
    /*****************************************************************************/
    
    #define EV_VERSION_MAJOR 4
    #define EV_VERSION_MINOR 15
    
    /* eventmask, revents, events... */
    enum {
      EV_UNDEF    = (int)0xFFFFFFFF, /* guaranteed to be invalid */
      EV_NONE     =            0x00, /* no events */
      EV_READ     =            0x01, /* ev_io detected read will not block */
      EV_WRITE    =            0x02, /* ev_io detected write will not block */
      EV__IOFDSET =            0x80, /* internal use only */
      EV_IO       =         EV_READ, /* alias for type-detection */
      EV_TIMER    =      0x00000100, /* timer timed out */
    #if EV_COMPAT3
      EV_TIMEOUT  =        EV_TIMER, /* pre 4.0 API compatibility */
    #endif
      EV_PERIODIC =      0x00000200, /* periodic timer timed out */
      EV_SIGNAL   =      0x00000400, /* signal was received */
      EV_CHILD    =      0x00000800, /* child/pid had status change */
      EV_STAT     =      0x00001000, /* stat data changed */
      EV_IDLE     =      0x00002000, /* event loop is idling */
      EV_PREPARE  =      0x00004000, /* event loop about to poll */
      EV_CHECK    =      0x00008000, /* event loop finished poll */
      EV_EMBED    =      0x00010000, /* embedded event loop needs sweep */
      EV_FORK     =      0x00020000, /* event loop resumed in child */
      EV_CLEANUP  =      0x00040000, /* event loop resumed in child */
      EV_ASYNC    =      0x00080000, /* async intra-loop signal */
      EV_CUSTOM   =      0x01000000, /* for use by user code */
      EV_ERROR    = (int)0x80000000  /* sent when an error occurs */
    };
    
    /* can be used to add custom fields to all watchers, while losing binary compatibility */
    #ifndef EV_COMMON
    # define EV_COMMON void *data;
    #endif
    
    #ifndef EV_CB_DECLARE
    # define EV_CB_DECLARE(type) void (*cb)(EV_P_ struct type *w, int revents);
    #endif
    #ifndef EV_CB_INVOKE
    # define EV_CB_INVOKE(watcher,revents) (watcher)->cb (EV_A_ (watcher), (revents))
    #endif
    
    /* not official, do not use */
    #define EV_CB(type,name) void name (EV_P_ struct ev_ ## type *w, int revents)
    
    /*
     * struct member types:
     * private: you may look at them, but not change them,
     *          and they might not mean anything to you.
     * ro: can be read anytime, but only changed when the watcher isn't active.
     * rw: can be read and modified anytime, even when the watcher is active.
     *
     * some internal details that might be helpful for debugging:
     *
     * active is either 0, which means the watcher is not active,
     *           or the array index of the watcher (periodics, timers)
     *           or the array index + 1 (most other watchers)
     *           or simply 1 for watchers that aren't in some array.
     * pending is either 0, in which case the watcher isn't,
     *           or the array index + 1 in the pendings array.
     */
    
    #if EV_MINPRI == EV_MAXPRI
    # define EV_DECL_PRIORITY
    #elif !defined (EV_DECL_PRIORITY)
    # define EV_DECL_PRIORITY int priority;
    #endif
    
    /* shared by all watchers */
    #define EV_WATCHER(type)			
      int active; /* private */			
      int pending; /* private */			
      EV_DECL_PRIORITY /* private */		
      EV_COMMON /* rw */				
      EV_CB_DECLARE (type) /* private */
    
    #define EV_WATCHER_LIST(type)			
      EV_WATCHER (type)				
      struct ev_watcher_list *next; /* private */
    
    #define EV_WATCHER_TIME(type)			
      EV_WATCHER (type)				
      ev_tstamp at;     /* private */
    
    /* base class, nothing to see here unless you subclass */
    typedef struct ev_watcher
    {
      EV_WATCHER (ev_watcher)
    } ev_watcher;
    
    /* base class, nothing to see here unless you subclass */
    typedef struct ev_watcher_list
    {
      EV_WATCHER_LIST (ev_watcher_list)
    } ev_watcher_list;
    
    /* base class, nothing to see here unless you subclass */
    typedef struct ev_watcher_time
    {
      EV_WATCHER_TIME (ev_watcher_time)
    } ev_watcher_time;
    
    /* invoked when fd is either EV_READable or EV_WRITEable */
    /* revent EV_READ, EV_WRITE */
    typedef struct ev_io
    {
      EV_WATCHER_LIST (ev_io)
    
      int fd;     /* ro */
      int events; /* ro */
    } ev_io;
    
    /* invoked after a specific time, repeatable (based on monotonic clock) */
    /* revent EV_TIMEOUT */
    typedef struct ev_timer
    {
      EV_WATCHER_TIME (ev_timer)
    
      ev_tstamp repeat; /* rw */
    } ev_timer;
    
    /* invoked at some specific time, possibly repeating at regular intervals (based on UTC) */
    /* revent EV_PERIODIC */
    typedef struct ev_periodic
    {
      EV_WATCHER_TIME (ev_periodic)
    
      ev_tstamp offset; /* rw */
      ev_tstamp interval; /* rw */
      ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) EV_THROW; /* rw */
    } ev_periodic;
    
    /* invoked when the given signal has been received */
    /* revent EV_SIGNAL */
    typedef struct ev_signal
    {
      EV_WATCHER_LIST (ev_signal)
    
      int signum; /* ro */
    } ev_signal;
    
    /* invoked when sigchld is received and waitpid indicates the given pid */
    /* revent EV_CHILD */
    /* does not support priorities */
    typedef struct ev_child
    {
      EV_WATCHER_LIST (ev_child)
    
      int flags;   /* private */
      int pid;     /* ro */
      int rpid;    /* rw, holds the received pid */
      int rstatus; /* rw, holds the exit status, use the macros from sys/wait.h */
    } ev_child;
    
    #if EV_STAT_ENABLE
    /* st_nlink = 0 means missing file or other error */
    # ifdef _WIN32
    typedef struct _stati64 ev_statdata;
    # else
    typedef struct stat ev_statdata;
    # endif
    
    /* invoked each time the stat data changes for a given path */
    /* revent EV_STAT */
    typedef struct ev_stat
    {
      EV_WATCHER_LIST (ev_stat)
    
      ev_timer timer;     /* private */
      ev_tstamp interval; /* ro */
      const char *path;   /* ro */
      ev_statdata prev;   /* ro */
      ev_statdata attr;   /* ro */
    
      int wd; /* wd for inotify, fd for kqueue */
    } ev_stat;
    #endif
    
    #if EV_IDLE_ENABLE
    /* invoked when the nothing else needs to be done, keeps the process from blocking */
    /* revent EV_IDLE */
    typedef struct ev_idle
    {
      EV_WATCHER (ev_idle)
    } ev_idle;
    #endif
    
    /* invoked for each run of the mainloop, just before the blocking call */
    /* you can still change events in any way you like */
    /* revent EV_PREPARE */
    typedef struct ev_prepare
    {
      EV_WATCHER (ev_prepare)
    } ev_prepare;
    
    /* invoked for each run of the mainloop, just after the blocking call */
    /* revent EV_CHECK */
    typedef struct ev_check
    {
      EV_WATCHER (ev_check)
    } ev_check;
    
    #if EV_FORK_ENABLE
    /* the callback gets invoked before check in the child process when a fork was detected */
    /* revent EV_FORK */
    typedef struct ev_fork
    {
      EV_WATCHER (ev_fork)
    } ev_fork;
    #endif
    
    #if EV_CLEANUP_ENABLE
    /* is invoked just before the loop gets destroyed */
    /* revent EV_CLEANUP */
    typedef struct ev_cleanup
    {
      EV_WATCHER (ev_cleanup)
    } ev_cleanup;
    #endif
    
    #if EV_EMBED_ENABLE
    /* used to embed an event loop inside another */
    /* the callback gets invoked when the event loop has handled events, and can be 0 */
    typedef struct ev_embed
    {
      EV_WATCHER (ev_embed)
    
      struct ev_loop *other; /* ro */
      ev_io io;              /* private */
      ev_prepare prepare;    /* private */
      ev_check check;        /* unused */
      ev_timer timer;        /* unused */
      ev_periodic periodic;  /* unused */
      ev_idle idle;          /* unused */
      ev_fork fork;          /* private */
    #if EV_CLEANUP_ENABLE
      ev_cleanup cleanup;    /* unused */
    #endif
    } ev_embed;
    #endif
    
    #if EV_ASYNC_ENABLE
    /* invoked when somebody calls ev_async_send on the watcher */
    /* revent EV_ASYNC */
    typedef struct ev_async
    {
      EV_WATCHER (ev_async)
    
      EV_ATOMIC_T sent; /* private */
    } ev_async;
    
    # define ev_async_pending(w) (+(w)->sent)
    #endif
    
    /* the presence of this union forces similar struct layout */
    union ev_any_watcher
    {
      struct ev_watcher w;
      struct ev_watcher_list wl;
    
      struct ev_io io;
      struct ev_timer timer;
      struct ev_periodic periodic;
      struct ev_signal signal;
      struct ev_child child;
    #if EV_STAT_ENABLE
      struct ev_stat stat;
    #endif
    #if EV_IDLE_ENABLE
      struct ev_idle idle;
    #endif
      struct ev_prepare prepare;
      struct ev_check check;
    #if EV_FORK_ENABLE
      struct ev_fork fork;
    #endif
    #if EV_CLEANUP_ENABLE
      struct ev_cleanup cleanup;
    #endif
    #if EV_EMBED_ENABLE
      struct ev_embed embed;
    #endif
    #if EV_ASYNC_ENABLE
      struct ev_async async;
    #endif
    };
    
    /* flag bits for ev_default_loop and ev_loop_new */
    enum {
      /* the default */
      EVFLAG_AUTO      = 0x00000000U, /* not quite a mask */
      /* flag bits */
      EVFLAG_NOENV     = 0x01000000U, /* do NOT consult environment */
      EVFLAG_FORKCHECK = 0x02000000U, /* check for a fork in each iteration */
      /* debugging/feature disable */
      EVFLAG_NOINOTIFY = 0x00100000U, /* do not attempt to use inotify */
    #if EV_COMPAT3
      EVFLAG_NOSIGFD   = 0, /* compatibility to pre-3.9 */
    #endif
      EVFLAG_SIGNALFD  = 0x00200000U, /* attempt to use signalfd */
      EVFLAG_NOSIGMASK = 0x00400000U  /* avoid modifying the signal mask */
    };
    
    /* method bits to be ored together */
    enum {
      EVBACKEND_SELECT  = 0x00000001U, /* about anywhere */
      EVBACKEND_POLL    = 0x00000002U, /* !win */
      EVBACKEND_EPOLL   = 0x00000004U, /* linux */
      EVBACKEND_KQUEUE  = 0x00000008U, /* bsd */
      EVBACKEND_DEVPOLL = 0x00000010U, /* solaris 8 */ /* NYI */
      EVBACKEND_PORT    = 0x00000020U, /* solaris 10 */
      EVBACKEND_ALL     = 0x0000003FU, /* all known backends */
      EVBACKEND_MASK    = 0x0000FFFFU  /* all future backends */
    };
    
    #if EV_PROTOTYPES
    EV_API_DECL int ev_version_major (void) EV_THROW;
    EV_API_DECL int ev_version_minor (void) EV_THROW;
    
    EV_API_DECL unsigned int ev_supported_backends (void) EV_THROW;
    EV_API_DECL unsigned int ev_recommended_backends (void) EV_THROW;
    EV_API_DECL unsigned int ev_embeddable_backends (void) EV_THROW;
    
    EV_API_DECL ev_tstamp ev_time (void) EV_THROW;
    EV_API_DECL void ev_sleep (ev_tstamp delay) EV_THROW; /* sleep for a while */
    
    /* Sets the allocation function to use, works like realloc.
     * It is used to allocate and free memory.
     * If it returns zero when memory needs to be allocated, the library might abort
     * or take some potentially destructive action.
     * The default is your system realloc function.
     */
    EV_API_DECL void ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW;
    
    /* set the callback function to call on a
     * retryable syscall error
     * (such as failed select, poll, epoll_wait)
     */
    EV_API_DECL void ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW;
    
    #if EV_MULTIPLICITY
    
    /* the default loop is the only one that handles signals and child watchers */
    /* you can call this as often as you like */
    EV_API_DECL struct ev_loop *ev_default_loop (unsigned int flags EV_CPP (= 0)) EV_THROW;
    
    #ifdef EV_API_STATIC
    EV_API_DECL struct ev_loop *ev_default_loop_ptr;
    #endif
    
    EV_INLINE struct ev_loop *
    ev_default_loop_uc_ (void) EV_THROW
    {
      extern struct ev_loop *ev_default_loop_ptr;
    
      return ev_default_loop_ptr;
    }
    
    EV_INLINE int
    ev_is_default_loop (EV_P) EV_THROW
    {
      return EV_A == EV_DEFAULT_UC;
    }
    
    /* create and destroy alternative loops that don't handle signals */
    EV_API_DECL struct ev_loop *ev_loop_new (unsigned int flags EV_CPP (= 0)) EV_THROW;
    
    EV_API_DECL ev_tstamp ev_now (EV_P) EV_THROW; /* time w.r.t. timers and the eventloop, updated after each poll */
    
    #else
    
    EV_API_DECL int ev_default_loop (unsigned int flags EV_CPP (= 0)) EV_THROW; /* returns true when successful */
    
    EV_API_DECL ev_tstamp ev_rt_now;
    
    EV_INLINE ev_tstamp
    ev_now (void) EV_THROW
    {
      return ev_rt_now;
    }
    
    /* looks weird, but ev_is_default_loop (EV_A) still works if this exists */
    EV_INLINE int
    ev_is_default_loop (void) EV_THROW
    {
      return 1;
    }
    
    #endif /* multiplicity */
    
    /* destroy event loops, also works for the default loop */
    EV_API_DECL void ev_loop_destroy (EV_P);
    
    /* this needs to be called after fork, to duplicate the loop */
    /* when you want to re-use it in the child */
    /* you can call it in either the parent or the child */
    /* you can actually call it at any time, anywhere :) */
    EV_API_DECL void ev_loop_fork (EV_P) EV_THROW;
    
    EV_API_DECL unsigned int ev_backend (EV_P) EV_THROW; /* backend in use by loop */
    
    EV_API_DECL void ev_now_update (EV_P) EV_THROW; /* update event loop time */
    
    #if EV_WALK_ENABLE
    /* walk (almost) all watchers in the loop of a given type, invoking the */
    /* callback on every such watcher. The callback might stop the watcher, */
    /* but do nothing else with the loop */
    EV_API_DECL void ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW;
    #endif
    
    #endif /* prototypes */
    
    /* ev_run flags values */
    enum {
      EVRUN_NOWAIT = 1, /* do not block/wait */
      EVRUN_ONCE   = 2  /* block *once* only */
    };
    
    /* ev_break how values */
    enum {
      EVBREAK_CANCEL = 0, /* undo unloop */
      EVBREAK_ONE    = 1, /* unloop once */
      EVBREAK_ALL    = 2  /* unloop all loops */
    };
    
    #if EV_PROTOTYPES
    EV_API_DECL int  ev_run (EV_P_ int flags EV_CPP (= 0));
    EV_API_DECL void ev_break (EV_P_ int how EV_CPP (= EVBREAK_ONE)) EV_THROW; /* break out of the loop */
    
    /*
     * ref/unref can be used to add or remove a refcount on the mainloop. every watcher
     * keeps one reference. if you have a long-running watcher you never unregister that
     * should not keep ev_loop from running, unref() after starting, and ref() before stopping.
     */
    EV_API_DECL void ev_ref   (EV_P) EV_THROW;
    EV_API_DECL void ev_unref (EV_P) EV_THROW;
    
    /*
     * convenience function, wait for a single event, without registering an event watcher
     * if timeout is < 0, do wait indefinitely
     */
    EV_API_DECL void ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW;
    
    # if EV_FEATURE_API
    EV_API_DECL unsigned int ev_iteration (EV_P) EV_THROW; /* number of loop iterations */
    EV_API_DECL unsigned int ev_depth     (EV_P) EV_THROW; /* #ev_loop enters - #ev_loop leaves */
    EV_API_DECL void         ev_verify    (EV_P) EV_THROW; /* abort if loop data corrupted */
    
    EV_API_DECL void ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW; /* sleep at least this time, default 0 */
    EV_API_DECL void ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW; /* sleep at least this time, default 0 */
    
    /* advanced stuff for threading etc. support, see docs */
    EV_API_DECL void ev_set_userdata (EV_P_ void *data) EV_THROW;
    EV_API_DECL void *ev_userdata (EV_P) EV_THROW;
    EV_API_DECL void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW;
    EV_API_DECL void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P) EV_THROW) EV_THROW;
    
    EV_API_DECL unsigned int ev_pending_count (EV_P) EV_THROW; /* number of pending events, if any */
    EV_API_DECL void ev_invoke_pending (EV_P); /* invoke all pending watchers */
    
    /*
     * stop/start the timer handling.
     */
    EV_API_DECL void ev_suspend (EV_P) EV_THROW;
    EV_API_DECL void ev_resume  (EV_P) EV_THROW;
    #endif
    
    #endif
    
    /* these may evaluate ev multiple times, and the other arguments at most once */
    /* either use ev_init + ev_TYPE_set, or the ev_TYPE_init macro, below, to first initialise a watcher */
    #define ev_init(ev,cb_) do {			
      ((ev_watcher *)(void *)(ev))->active  =	
      ((ev_watcher *)(void *)(ev))->pending = 0;	
      ev_set_priority ((ev), 0);			
      ev_set_cb ((ev), cb_);			
    } while (0)
    
    #define ev_io_set(ev,fd_,events_)            do { (ev)->fd = (fd_); (ev)->events = (events_) | EV__IOFDSET; } while (0)
    #define ev_timer_set(ev,after_,repeat_)      do { ((ev_watcher_time *)(ev))->at = (after_); (ev)->repeat = (repeat_); } while (0)
    #define ev_periodic_set(ev,ofs_,ival_,rcb_)  do { (ev)->offset = (ofs_); (ev)->interval = (ival_); (ev)->reschedule_cb = (rcb_); } while (0)
    #define ev_signal_set(ev,signum_)            do { (ev)->signum = (signum_); } while (0)
    #define ev_child_set(ev,pid_,trace_)         do { (ev)->pid = (pid_); (ev)->flags = !!(trace_); } while (0)
    #define ev_stat_set(ev,path_,interval_)      do { (ev)->path = (path_); (ev)->interval = (interval_); (ev)->wd = -2; } while (0)
    #define ev_idle_set(ev)                      /* nop, yes, this is a serious in-joke */
    #define ev_prepare_set(ev)                   /* nop, yes, this is a serious in-joke */
    #define ev_check_set(ev)                     /* nop, yes, this is a serious in-joke */
    #define ev_embed_set(ev,other_)              do { (ev)->other = (other_); } while (0)
    #define ev_fork_set(ev)                      /* nop, yes, this is a serious in-joke */
    #define ev_cleanup_set(ev)                   /* nop, yes, this is a serious in-joke */
    #define ev_async_set(ev)                     /* nop, yes, this is a serious in-joke */
    
    #define ev_io_init(ev,cb,fd,events)          do { ev_init ((ev), (cb)); ev_io_set ((ev),(fd),(events)); } while (0)
    #define ev_timer_init(ev,cb,after,repeat)    do { ev_init ((ev), (cb)); ev_timer_set ((ev),(after),(repeat)); } while (0)
    #define ev_periodic_init(ev,cb,ofs,ival,rcb) do { ev_init ((ev), (cb)); ev_periodic_set ((ev),(ofs),(ival),(rcb)); } while (0)
    #define ev_signal_init(ev,cb,signum)         do { ev_init ((ev), (cb)); ev_signal_set ((ev), (signum)); } while (0)
    #define ev_child_init(ev,cb,pid,trace)       do { ev_init ((ev), (cb)); ev_child_set ((ev),(pid),(trace)); } while (0)
    #define ev_stat_init(ev,cb,path,interval)    do { ev_init ((ev), (cb)); ev_stat_set ((ev),(path),(interval)); } while (0)
    #define ev_idle_init(ev,cb)                  do { ev_init ((ev), (cb)); ev_idle_set ((ev)); } while (0)
    #define ev_prepare_init(ev,cb)               do { ev_init ((ev), (cb)); ev_prepare_set ((ev)); } while (0)
    #define ev_check_init(ev,cb)                 do { ev_init ((ev), (cb)); ev_check_set ((ev)); } while (0)
    #define ev_embed_init(ev,cb,other)           do { ev_init ((ev), (cb)); ev_embed_set ((ev),(other)); } while (0)
    #define ev_fork_init(ev,cb)                  do { ev_init ((ev), (cb)); ev_fork_set ((ev)); } while (0)
    #define ev_cleanup_init(ev,cb)               do { ev_init ((ev), (cb)); ev_cleanup_set ((ev)); } while (0)
    #define ev_async_init(ev,cb)                 do { ev_init ((ev), (cb)); ev_async_set ((ev)); } while (0)
    
    #define ev_is_pending(ev)                    (0 + ((ev_watcher *)(void *)(ev))->pending) /* ro, true when watcher is waiting for callback invocation */
    #define ev_is_active(ev)                     (0 + ((ev_watcher *)(void *)(ev))->active) /* ro, true when the watcher has been started */
    
    #define ev_cb(ev)                            (ev)->cb /* rw */
    
    #if EV_MINPRI == EV_MAXPRI
    # define ev_priority(ev)                     ((ev), EV_MINPRI)
    # define ev_set_priority(ev,pri)             ((ev), (pri))
    #else
    # define ev_priority(ev)                     (+(((ev_watcher *)(void *)(ev))->priority))
    # define ev_set_priority(ev,pri)             (   (ev_watcher *)(void *)(ev))->priority = (pri)
    #endif
    
    #define ev_periodic_at(ev)                   (+((ev_watcher_time *)(ev))->at)
    
    #ifndef ev_set_cb
    # define ev_set_cb(ev,cb_)                   ev_cb (ev) = (cb_)
    #endif
    
    /* stopping (enabling, adding) a watcher does nothing if it is already running */
    /* stopping (disabling, deleting) a watcher does nothing unless its already running */
    #if EV_PROTOTYPES
    
    /* feeds an event into a watcher as if the event actually occurred */
    /* accepts any ev_watcher type */
    EV_API_DECL void ev_feed_event     (EV_P_ void *w, int revents) EV_THROW;
    EV_API_DECL void ev_feed_fd_event  (EV_P_ int fd, int revents) EV_THROW;
    #if EV_SIGNAL_ENABLE
    EV_API_DECL void ev_feed_signal    (int signum) EV_THROW;
    EV_API_DECL void ev_feed_signal_event (EV_P_ int signum) EV_THROW;
    #endif
    EV_API_DECL void ev_invoke         (EV_P_ void *w, int revents);
    EV_API_DECL int  ev_clear_pending  (EV_P_ void *w) EV_THROW;
    
    EV_API_DECL void ev_io_start       (EV_P_ ev_io *w) EV_THROW;
    EV_API_DECL void ev_io_stop        (EV_P_ ev_io *w) EV_THROW;
    
    EV_API_DECL void ev_timer_start    (EV_P_ ev_timer *w) EV_THROW;
    EV_API_DECL void ev_timer_stop     (EV_P_ ev_timer *w) EV_THROW;
    /* stops if active and no repeat, restarts if active and repeating, starts if inactive and repeating */
    EV_API_DECL void ev_timer_again    (EV_P_ ev_timer *w) EV_THROW;
    /* return remaining time */
    EV_API_DECL ev_tstamp ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW;
    
    #if EV_PERIODIC_ENABLE
    EV_API_DECL void ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW;
    EV_API_DECL void ev_periodic_stop  (EV_P_ ev_periodic *w) EV_THROW;
    EV_API_DECL void ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW;
    #endif
    
    /* only supported in the default loop */
    #if EV_SIGNAL_ENABLE
    EV_API_DECL void ev_signal_start   (EV_P_ ev_signal *w) EV_THROW;
    EV_API_DECL void ev_signal_stop    (EV_P_ ev_signal *w) EV_THROW;
    #endif
    
    /* only supported in the default loop */
    # if EV_CHILD_ENABLE
    EV_API_DECL void ev_child_start    (EV_P_ ev_child *w) EV_THROW;
    EV_API_DECL void ev_child_stop     (EV_P_ ev_child *w) EV_THROW;
    # endif
    
    # if EV_STAT_ENABLE
    EV_API_DECL void ev_stat_start     (EV_P_ ev_stat *w) EV_THROW;
    EV_API_DECL void ev_stat_stop      (EV_P_ ev_stat *w) EV_THROW;
    EV_API_DECL void ev_stat_stat      (EV_P_ ev_stat *w) EV_THROW;
    # endif
    
    # if EV_IDLE_ENABLE
    EV_API_DECL void ev_idle_start     (EV_P_ ev_idle *w) EV_THROW;
    EV_API_DECL void ev_idle_stop      (EV_P_ ev_idle *w) EV_THROW;
    # endif
    
    #if EV_PREPARE_ENABLE
    EV_API_DECL void ev_prepare_start  (EV_P_ ev_prepare *w) EV_THROW;
    EV_API_DECL void ev_prepare_stop   (EV_P_ ev_prepare *w) EV_THROW;
    #endif
    
    #if EV_CHECK_ENABLE
    EV_API_DECL void ev_check_start    (EV_P_ ev_check *w) EV_THROW;
    EV_API_DECL void ev_check_stop     (EV_P_ ev_check *w) EV_THROW;
    #endif
    
    # if EV_FORK_ENABLE
    EV_API_DECL void ev_fork_start     (EV_P_ ev_fork *w) EV_THROW;
    EV_API_DECL void ev_fork_stop      (EV_P_ ev_fork *w) EV_THROW;
    # endif
    
    # if EV_CLEANUP_ENABLE
    EV_API_DECL void ev_cleanup_start  (EV_P_ ev_cleanup *w) EV_THROW;
    EV_API_DECL void ev_cleanup_stop   (EV_P_ ev_cleanup *w) EV_THROW;
    # endif
    
    # if EV_EMBED_ENABLE
    /* only supported when loop to be embedded is in fact embeddable */
    EV_API_DECL void ev_embed_start    (EV_P_ ev_embed *w) EV_THROW;
    EV_API_DECL void ev_embed_stop     (EV_P_ ev_embed *w) EV_THROW;
    EV_API_DECL void ev_embed_sweep    (EV_P_ ev_embed *w) EV_THROW;
    # endif
    
    # if EV_ASYNC_ENABLE
    EV_API_DECL void ev_async_start    (EV_P_ ev_async *w) EV_THROW;
    EV_API_DECL void ev_async_stop     (EV_P_ ev_async *w) EV_THROW;
    EV_API_DECL void ev_async_send     (EV_P_ ev_async *w) EV_THROW;
    # endif
    
    #if EV_COMPAT3
      #define EVLOOP_NONBLOCK EVRUN_NOWAIT
      #define EVLOOP_ONESHOT  EVRUN_ONCE
      #define EVUNLOOP_CANCEL EVBREAK_CANCEL
      #define EVUNLOOP_ONE    EVBREAK_ONE
      #define EVUNLOOP_ALL    EVBREAK_ALL
      #if EV_PROTOTYPES
        EV_INLINE void ev_loop   (EV_P_ int flags) { ev_run   (EV_A_ flags); }
        EV_INLINE void ev_unloop (EV_P_ int how  ) { ev_break (EV_A_ how  ); }
        EV_INLINE void ev_default_destroy (void) { ev_loop_destroy (EV_DEFAULT); }
        EV_INLINE void ev_default_fork    (void) { ev_loop_fork    (EV_DEFAULT); }
        #if EV_FEATURE_API
          EV_INLINE unsigned int ev_loop_count  (EV_P) { return ev_iteration  (EV_A); }
          EV_INLINE unsigned int ev_loop_depth  (EV_P) { return ev_depth      (EV_A); }
          EV_INLINE void         ev_loop_verify (EV_P) {        ev_verify     (EV_A); }
        #endif
      #endif
    #else
      typedef struct ev_loop ev_loop;
    #endif
    
    #endif
    
    EV_CPP(})
    
    #endif
    

      event.h

    /*
     * libevent compatibility header, only core events supported
     *
     * Copyright (c) 2007,2008,2010,2012 Marc Alexander Lehmann <libev@schmorp.de>
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without modifica-
     * tion, are permitted provided that the following conditions are met:
     *
     *   1.  Redistributions of source code must retain the above copyright notice,
     *       this list of conditions and the following disclaimer.
     *
     *   2.  Redistributions in binary form must reproduce the above copyright
     *       notice, this list of conditions and the following disclaimer in the
     *       documentation and/or other materials provided with the distribution.
     *
     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     * OF THE POSSIBILITY OF SUCH DAMAGE.
     *
     * Alternatively, the contents of this file may be used under the terms of
     * the GNU General Public License ("GPL") version 2 or any later version,
     * in which case the provisions of the GPL are applicable instead of
     * the above. If you wish to allow the use of your version of this file
     * only under the terms of the GPL and not to allow others to use your
     * version of this file under the BSD license, indicate your decision
     * by deleting the provisions above and replace them with the notice
     * and other provisions required by the GPL. If you do not delete the
     * provisions above, a recipient may use your version of this file under
     * either the BSD or the GPL.
     */
    
    #ifndef EVENT_H_
    #define EVENT_H_
    
    #ifdef EV_H
    # include EV_H
    #else
    # include "ev.h"
    #endif
    
    #ifndef EVLOOP_NONBLOCK
    # define EVLOOP_NONBLOCK EVRUN_NOWAIT
    #endif
    #ifndef EVLOOP_ONESHOT
    # define EVLOOP_ONESHOT EVRUN_ONCE
    #endif
    #ifndef EV_TIMEOUT
    # define EV_TIMEOUT EV_TIMER
    #endif
    
    #ifdef __cplusplus
    extern "C" {
    #endif
    
    /* we need sys/time.h for struct timeval only */
    #if !defined (WIN32) || defined (__MINGW32__)
    # include <time.h> /* mingw seems to need this, for whatever reason */
    # include <sys/time.h>
    #endif
    
    struct event_base;
    
    #define EVLIST_TIMEOUT  0x01
    #define EVLIST_INSERTED 0x02
    #define EVLIST_SIGNAL   0x04
    #define EVLIST_ACTIVE   0x08
    #define EVLIST_INTERNAL 0x10
    #define EVLIST_INIT     0x80
    
    typedef void (*event_callback_fn)(int, short, void *);
    
    struct event
    {
      /* libev watchers we map onto */
      union {
        struct ev_io io;
        struct ev_signal sig;
      } iosig;
      struct ev_timer to;
    
      /* compatibility slots */
      struct event_base *ev_base;
      event_callback_fn ev_callback;
      void *ev_arg;
      int ev_fd;
      int ev_pri;
      int ev_res;
      int ev_flags;
      short ev_events;
    };
    
    event_callback_fn event_get_callback (const struct event *ev);
    
    #define EV_READ                    EV_READ
    #define EV_WRITE                   EV_WRITE
    #define EV_PERSIST                 0x10
    #define EV_ET                      0x20 /* nop */
    
    #define EVENT_SIGNAL(ev)           ((int) (ev)->ev_fd)
    #define EVENT_FD(ev)               ((int) (ev)->ev_fd)
    
    #define event_initialized(ev)      ((ev)->ev_flags & EVLIST_INIT)
    
    #define evtimer_add(ev,tv)         event_add (ev, tv)
    #define evtimer_set(ev,cb,data)    event_set (ev, -1, 0, cb, data)
    #define evtimer_del(ev)            event_del (ev)
    #define evtimer_pending(ev,tv)     event_pending (ev, EV_TIMEOUT, tv)
    #define evtimer_initialized(ev)    event_initialized (ev)
    
    #define timeout_add(ev,tv)         evtimer_add (ev, tv)
    #define timeout_set(ev,cb,data)    evtimer_set (ev, cb, data)
    #define timeout_del(ev)            evtimer_del (ev)
    #define timeout_pending(ev,tv)     evtimer_pending (ev, tv)
    #define timeout_initialized(ev)    evtimer_initialized (ev)
    
    #define signal_add(ev,tv)          event_add (ev, tv)
    #define signal_set(ev,sig,cb,data) event_set (ev, sig, EV_SIGNAL | EV_PERSIST, cb, data)
    #define signal_del(ev)             event_del (ev)
    #define signal_pending(ev,tv)      event_pending (ev, EV_SIGNAL, tv)
    #define signal_initialized(ev)     event_initialized (ev)
    
    const char *event_get_version (void);
    const char *event_get_method (void);
    
    void *event_init (void);
    void event_base_free (struct event_base *base);
    
    #define EVLOOP_ONCE      EVLOOP_ONESHOT
    int event_loop (int);
    int event_loopexit (struct timeval *tv);
    int event_dispatch (void);
    
    #define _EVENT_LOG_DEBUG 0
    #define _EVENT_LOG_MSG   1
    #define _EVENT_LOG_WARN  2
    #define _EVENT_LOG_ERR   3
    typedef void (*event_log_cb)(int severity, const char *msg);
    void event_set_log_callback(event_log_cb cb);
    
    void event_set (struct event *ev, int fd, short events, void (*cb)(int, short, void *), void *arg);
    int event_once (int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv);
    
    int event_add (struct event *ev, struct timeval *tv);
    int event_del (struct event *ev);
    void event_active (struct event *ev, int res, short ncalls); /* ncalls is being ignored */
    
    int event_pending (struct event *ev, short, struct timeval *tv);
    
    int event_priority_init (int npri);
    int event_priority_set (struct event *ev, int pri);
    
    struct event_base *event_base_new (void);
    const char *event_base_get_method (const struct event_base *);
    int event_base_set (struct event_base *base, struct event *ev);
    int event_base_loop (struct event_base *base, int);
    int event_base_loopexit (struct event_base *base, struct timeval *tv);
    int event_base_dispatch (struct event_base *base);
    int event_base_once (struct event_base *base, int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv);
    int event_base_priority_init (struct event_base *base, int fd);
    
    /* next line is different in the libevent+libev version */
    /*libevent-include*/
    
    #ifdef __cplusplus
    }
    #endif
    
    #endif
    

      event.c

    /*
     * libevent compatibility layer
     *
     * Copyright (c) 2007,2008,2009,2010,2012 Marc Alexander Lehmann <libev@schmorp.de>
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without modifica-
     * tion, are permitted provided that the following conditions are met:
     *
     *   1.  Redistributions of source code must retain the above copyright notice,
     *       this list of conditions and the following disclaimer.
     *
     *   2.  Redistributions in binary form must reproduce the above copyright
     *       notice, this list of conditions and the following disclaimer in the
     *       documentation and/or other materials provided with the distribution.
     *
     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     * OF THE POSSIBILITY OF SUCH DAMAGE.
     *
     * Alternatively, the contents of this file may be used under the terms of
     * the GNU General Public License ("GPL") version 2 or any later version,
     * in which case the provisions of the GPL are applicable instead of
     * the above. If you wish to allow the use of your version of this file
     * only under the terms of the GPL and not to allow others to use your
     * version of this file under the BSD license, indicate your decision
     * by deleting the provisions above and replace them with the notice
     * and other provisions required by the GPL. If you do not delete the
     * provisions above, a recipient may use your version of this file under
     * either the BSD or the GPL.
     */
    
    #include <stddef.h>
    #include <stdlib.h>
    #include <assert.h>
    
    #ifdef EV_EVENT_H
    # include EV_EVENT_H
    #else
    # include "event.h"
    #endif
    
    #if EV_MULTIPLICITY
    # define dLOOPev struct ev_loop *loop = (struct ev_loop *)ev->ev_base
    # define dLOOPbase struct ev_loop *loop = (struct ev_loop *)base
    #else
    # define dLOOPev
    # define dLOOPbase
    #endif
    
    /* never accessed, will always be cast from/to ev_loop */
    struct event_base
    {
      int dummy;
    };
    
    static struct event_base *ev_x_cur;
    
    static ev_tstamp
    ev_tv_get (struct timeval *tv)
    {
      if (tv)
        {
          ev_tstamp after = tv->tv_sec + tv->tv_usec * 1e-6;
          return after ? after : 1e-6;
        }
      else
        return -1.;
    }
    
    #define EVENT_STRINGIFY(s) # s
    #define EVENT_VERSION(a,b) EVENT_STRINGIFY (a) "." EVENT_STRINGIFY (b)
    
    const char *
    event_get_version (void)
    {
      /* returns ABI, not API or library, version */
      return EVENT_VERSION (EV_VERSION_MAJOR, EV_VERSION_MINOR);
    }
    
    const char *
    event_get_method (void)
    {
      return "libev";
    }
    
    void *event_init (void)
    {
    #if EV_MULTIPLICITY
      if (ev_x_cur)
        ev_x_cur = (struct event_base *)ev_loop_new (EVFLAG_AUTO);
      else
        ev_x_cur = (struct event_base *)ev_default_loop (EVFLAG_AUTO);
    #else
      assert (("libev: multiple event bases not supported when not compiled with EV_MULTIPLICITY", !ev_x_cur));
    
      ev_x_cur = (struct event_base *)(long)ev_default_loop (EVFLAG_AUTO);
    #endif
    
      return ev_x_cur;
    }
    
    const char *
    event_base_get_method (const struct event_base *base)
    {
      return "libev";
    }
    
    struct event_base *
    event_base_new (void)
    {
    #if EV_MULTIPLICITY
      return (struct event_base *)ev_loop_new (EVFLAG_AUTO);
    #else
      assert (("libev: multiple event bases not supported when not compiled with EV_MULTIPLICITY"));
      return NULL;
    #endif
    }
    
    void event_base_free (struct event_base *base)
    {
      dLOOPbase;
    
    #if EV_MULTIPLICITY
      if (!ev_is_default_loop (loop))
        ev_loop_destroy (loop);
    #endif
    }
    
    int event_dispatch (void)
    {
      return event_base_dispatch (ev_x_cur);
    }
    
    #ifdef EV_STANDALONE
    void event_set_log_callback (event_log_cb cb)
    {
      /* nop */
    }
    #endif
    
    int event_loop (int flags)
    {
      return event_base_loop (ev_x_cur, flags);
    }
    
    int event_loopexit (struct timeval *tv)
    {
      return event_base_loopexit (ev_x_cur, tv);
    }
    
    event_callback_fn event_get_callback
    (const struct event *ev)
    {
      return ev->ev_callback;
    }
    
    static void
    ev_x_cb (struct event *ev, int revents)
    {
      revents &= EV_READ | EV_WRITE | EV_TIMER | EV_SIGNAL;
    
      ev->ev_res = revents;
      ev->ev_callback (ev->ev_fd, (short)revents, ev->ev_arg);
    }
    
    static void
    ev_x_cb_sig (EV_P_ struct ev_signal *w, int revents)
    {
      struct event *ev = (struct event *)(((char *)w) - offsetof (struct event, iosig.sig));
    
      if (revents & EV_ERROR)
        event_del (ev);
    
      ev_x_cb (ev, revents);
    }
    
    static void
    ev_x_cb_io (EV_P_ struct ev_io *w, int revents)
    {
      struct event *ev = (struct event *)(((char *)w) - offsetof (struct event, iosig.io));
    
      if ((revents & EV_ERROR) || !(ev->ev_events & EV_PERSIST))
        event_del (ev);
    
      ev_x_cb (ev, revents);
    }
    
    static void
    ev_x_cb_to (EV_P_ struct ev_timer *w, int revents)
    {
      struct event *ev = (struct event *)(((char *)w) - offsetof (struct event, to));
    
      event_del (ev);
    
      ev_x_cb (ev, revents);
    }
    
    void event_set (struct event *ev, int fd, short events, void (*cb)(int, short, void *), void *arg)
    {
      if (events & EV_SIGNAL)
        ev_init (&ev->iosig.sig, ev_x_cb_sig);
      else
        ev_init (&ev->iosig.io, ev_x_cb_io);
    
      ev_init (&ev->to, ev_x_cb_to);
    
      ev->ev_base     = ev_x_cur; /* not threadsafe, but it's how libevent works */
      ev->ev_fd       = fd;
      ev->ev_events   = events;
      ev->ev_pri      = 0;
      ev->ev_callback = cb;
      ev->ev_arg      = arg;
      ev->ev_res      = 0;
      ev->ev_flags    = EVLIST_INIT;
    }
    
    int event_once (int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv)
    {
      return event_base_once (ev_x_cur, fd, events, cb, arg, tv);
    }
    
    int event_add (struct event *ev, struct timeval *tv)
    {
      dLOOPev;
    
      if (ev->ev_events & EV_SIGNAL)
        {
          if (!ev_is_active (&ev->iosig.sig))
            {
              ev_signal_set (&ev->iosig.sig, ev->ev_fd);
              ev_signal_start (EV_A_ &ev->iosig.sig);
    
              ev->ev_flags |= EVLIST_SIGNAL;
            }
        }
      else if (ev->ev_events & (EV_READ | EV_WRITE))
        {
          if (!ev_is_active (&ev->iosig.io))
            {
              ev_io_set (&ev->iosig.io, ev->ev_fd, ev->ev_events & (EV_READ | EV_WRITE));
              ev_io_start (EV_A_ &ev->iosig.io);
    
              ev->ev_flags |= EVLIST_INSERTED;
            }
        }
    
      if (tv)
        {
          ev->to.repeat = ev_tv_get (tv);
          ev_timer_again (EV_A_ &ev->to);
          ev->ev_flags |= EVLIST_TIMEOUT;
        }
      else
        {
          ev_timer_stop (EV_A_ &ev->to);
          ev->ev_flags &= ~EVLIST_TIMEOUT;
        }
    
      ev->ev_flags |= EVLIST_ACTIVE;
    
      return 0;
    }
    
    int event_del (struct event *ev)
    {
      dLOOPev;
    
      if (ev->ev_events & EV_SIGNAL)
        ev_signal_stop (EV_A_ &ev->iosig.sig);
      else if (ev->ev_events & (EV_READ | EV_WRITE))
        ev_io_stop (EV_A_ &ev->iosig.io);
    
      if (ev_is_active (&ev->to))
        ev_timer_stop (EV_A_ &ev->to);
    
      ev->ev_flags = EVLIST_INIT;
    
      return 0;
    }
    
    void event_active (struct event *ev, int res, short ncalls)
    {
      dLOOPev;
    
      if (res & EV_TIMEOUT)
        ev_feed_event (EV_A_ &ev->to, res & EV_TIMEOUT);
    
      if (res & EV_SIGNAL)
        ev_feed_event (EV_A_ &ev->iosig.sig, res & EV_SIGNAL);
    
      if (res & (EV_READ | EV_WRITE))
        ev_feed_event (EV_A_ &ev->iosig.io, res & (EV_READ | EV_WRITE));
    }
    
    int event_pending (struct event *ev, short events, struct timeval *tv)
    {
      short revents = 0;
      dLOOPev;
    
      if (ev->ev_events & EV_SIGNAL)
        {
          /* sig */
          if (ev_is_active (&ev->iosig.sig) || ev_is_pending (&ev->iosig.sig))
            revents |= EV_SIGNAL;
        }
      else if (ev->ev_events & (EV_READ | EV_WRITE))
        {
          /* io */
          if (ev_is_active (&ev->iosig.io) || ev_is_pending (&ev->iosig.io))
            revents |= ev->ev_events & (EV_READ | EV_WRITE);
        }
    
      if (ev->ev_events & EV_TIMEOUT || ev_is_active (&ev->to) || ev_is_pending (&ev->to))
        {
          revents |= EV_TIMEOUT;
    
          if (tv)
            {
              ev_tstamp at = ev_now (EV_A);
    
              tv->tv_sec  = (long)at;
              tv->tv_usec = (long)((at - (ev_tstamp)tv->tv_sec) * 1e6);
            }
        }
    
      return events & revents;
    }
    
    int event_priority_init (int npri)
    {
      return event_base_priority_init (ev_x_cur, npri);
    }
    
    int event_priority_set (struct event *ev, int pri)
    {
      ev->ev_pri = pri;
    
      return 0;
    }
    
    int event_base_set (struct event_base *base, struct event *ev)
    {
      ev->ev_base = base;
    
      return 0;
    }
    
    int event_base_loop (struct event_base *base, int flags)
    {
      dLOOPbase;
    
      return !ev_run (EV_A_ flags);
    }
    
    int event_base_dispatch (struct event_base *base)
    {
      return event_base_loop (base, 0);
    }
    
    static void
    ev_x_loopexit_cb (int revents, void *base)
    {
      dLOOPbase;
    
      ev_break (EV_A_ EVBREAK_ONE);
    }
    
    int event_base_loopexit (struct event_base *base, struct timeval *tv)
    {
      ev_tstamp after = ev_tv_get (tv);
      dLOOPbase;
    
      ev_once (EV_A_ -1, 0, after >= 0. ? after : 0., ev_x_loopexit_cb, (void *)base);
    
      return 0;
    }
    
    struct ev_x_once
    {
      int fd;
      void (*cb)(int, short, void *);
      void *arg;
    };
    
    static void
    ev_x_once_cb (int revents, void *arg)
    {
      struct ev_x_once *once = (struct ev_x_once *)arg;
    
      once->cb (once->fd, (short)revents, once->arg);
      free (once);
    }
    
    int event_base_once (struct event_base *base, int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv)
    {
      struct ev_x_once *once = (struct ev_x_once *)malloc (sizeof (struct ev_x_once));
      dLOOPbase;
    
      if (!once)
        return -1;
    
      once->fd  = fd;
      once->cb  = cb;
      once->arg = arg;
    
      ev_once (EV_A_ fd, events & (EV_READ | EV_WRITE), ev_tv_get (tv), ev_x_once_cb, (void *)once);
    
      return 0;
    }
    
    int event_base_priority_init (struct event_base *base, int npri)
    {
      /*dLOOPbase;*/
    
      return 0;
    }
    

      

  • 相关阅读:
    Jmeter 使用技巧 (如何在linux下运行jmeter视窗界面呢)-jmeter如何模拟http发送gzip数据
    1.Jmeter 快速入门教程(一)
    4.jmeter在线并发的怎样设置
    3.jmeter jsr232 脚本获取当前测试的正在活动的线程数
    2.Jmeter 如何在jsr223 脚本中停止测试任务
    1.如何在JMeter中使用JUnit
    app电量测试
    梯度下降法实现对数几率回归
    基于C/S模式的简易聊天室
    大数据使用及现状调研报告
  • 原文地址:https://www.cnblogs.com/xiangshancuizhu/p/3430445.html
Copyright © 2011-2022 走看看