zoukankan      html  css  js  c++  java
  • 大数据5.1

    1.1 分桶

    1.1.1 分桶表概念

      分区和分桶可以同时,分桶是更细粒度的分配方式。分区是追求效率,分桶又解决什么问题呢?海量数据的分开存储。

      对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。

      把表(或者分区)组织成桶(Bucket)有两个理由:

      获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以大大减少JOIN的数据量。

      使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。

    1.1.2 创建分桶表

    创建带桶的表:

    use jtdb;

    create table tb_teacher(id int,name string) clustered by (id) into 4 buckets row format delimited fields terminated by ',';

    默认桶功能是关闭的

    Hive的底层是MapReduce,默认Reduce就一个,就只能输出一个位置,强制多个 reduce 进行输出。

    hive> set hive.enforce.bucketing=true;

    teacher.txt

    1,王海涛

    2,花倩

    3,张慎正

    4,齐雷

    5,刘昱江

    6,陈子枢

    分桶表不允许直接从外部导入数据,先创建临时表,通过临时表把数据插过去

    hive> create table tb_teacher_tmp(id int,name string) row format delimited fields terminated by ',';

    hive> load data local inpath '/usr/local/src/teacher.txt' into table tb_teacher_tmp;

    查看数据

    hive> select * from tb_teacher_tmp;

    OK

    1 王海涛

    2 花倩

    3 张慎正

    4 齐雷

    5 刘昱江

    6 陈子枢

    Time taken: 0.728 seconds, Fetched: 6 row(s)

    hive>

    假设我们现在的tb_teacher_tmp表的数据太多了,这时就可以用分桶。

    导入数据

    hive> insert overwrite table tb_teacher select * from tb_teacher_tmp;

    注意分桶时会产生多个reduce,时间会比较慢,稍等片刻

     

    1.1.3 存放结构

     

    1.1.4 数据块取样

    所谓桶其实就是产生了不同的文件,tablesample为样本

    table_sample: TABLESAMPLE (BUCKET x OUT OF y [ON colname])  

    colname上分桶的行随机进入1y个桶中,返回属于桶x的行。

    例如:

    hive> select * from tb_teacher tablesample(bucket 1 out of 4 on id);

    hive> select * from tb_teacher tablesample(bucket 1 out of 2 on id);

    按百分比返回数据返回一半数据

    hive> select * from tb_teacher tablesample(50 percent);

    1.2 利用hive进行数据的离线分析

    1.2.1 准备环境

    如果重启了服务器,需要重新启动各服务

     

    程序

    路径

    启动命令

     

    ZooKeeper

    /usr/local/src/zk

    /zookeeper-3.4.8/bin

    ./zkServer.sh start

    ./zkServer.sh status

     

    Hadoop+HDFS

    /usr/local/src/hadoop

    /hadoop-2.7.1/sbin

    Start-all.sh

     

    Flume

    /usr/local/src/flume

    /apache-flume-1.6.0-bin/conf

    下面有,暂时不用启动

     

    启动项目

    必须在Flume后面启动

    启动jtlogserver项目

     

    Hive

    /usr/local/src/hive

    /apache-hive-1.2.0-bin/bin

    ./hive

    检查防火墙状态

    [root@hadoop01 ~]# firewall-cmd --state #检查防火墙状态

    not running #返回值,未运行

    关闭防火墙

    systemctl stop firewalld.service #关闭防火墙服务

    systemctl disable firewalld.service #禁止防火墙开启启动

    检查进程

    [root@hadoop01 bin]# jps

    3034 ResourceManager #yarn

    2882 SecondaryNameNode #Hadoop

    4591 Application #Flume

    2713 DataNode #Hadoop

    5772 QuorumPeerMain #ZooKeeper

    2586 NameNode #Hadoop

    1.2.2 数据清洗

    由于数据的来源和格式的不同和字段的缺失等等问题,在处理数据之前,对数据要进行加工处理,这个过程被称为数据的清洗。保障数据的格式统一,字段不会有明显的缺失。

    先要跟业务人员沟通,基于业务处理这些数据。

    数据量大就用MR进行清洗,数据量小可以用SQLHive进行清洗,也可以用shell脚本进行清洗。方式很多,哪种都可以,根据实际情况进行处理。

     

    并不是所有数据都需要,可以先去除,只保留url+urlname+uvid+ssid+sscount+sstime+cip

    1.2.3 创建外部分区表

    1.2.3.1 业务系统处理过程

    利用外部表的方式,由浏览器访问页面从而触发埋点js,从而调用logServlet,从而写log4j日志信息到flume中,flume又直接写入到HDFS中,然后hive对指定的目录创建外部表。从而hive就获取到用户的网站流量日志信息。

    1.2.3.2 修改配置文件

    利用flume的拦截器在heads中添加时间戳,这样就可以获取并格式化这个时间戳%Y-%m-%d,还要注意hive指定的外部表路径一致(创建动态的路径)。

    flume-jt.properties

    a1.sources.r1.interceptors = t1

    a1.sources.r1.interceptors.t1.type = timestamp

     

    a1.sinks.k1.type = hdfs

    a1.sinks.k1.hdfs.path = hdfs://hadoop01:9000/flux/reportTime=%Y-%m-%d

    注意:如果是配置的Hadoop HA,则对应flume要做调整

    先要将hadoop集群的core-site.xmlhdfs-site.xml放在flumeconf目录下,然后访问时要写成hdfs://nsns为在hdfs-site.xml中定义的

    <property>

    <name>dfs.nameservices</name>

    <value>ns</value>

    </property>

    修改地址为:

    a1.sinks.k1.hdfs.path = hdfs://ns/flux/reportTime=%Y-%m-%d

    1.2.3.3 启动flumeagent

    cd /usr/local/src/flume/apache-flume-1.6.0-bin/conf

    [root@hadoop01 conf]# ../bin/flume-ng agent -c ./ -f ./flume-jt.properties -n a1 -Dflume.root.logger=INFO,console &

    参数说明:

    -c --conf配置目录 ./当前路径

    -f --config-file 配置文件

    -n –name 指定agent的名称

    1.2.3.4 创建外部分区表

    cd /usr/local/src/hive/apache-hive-1.2.0-bin/bin

    ./hive #启动hive

    hive> create database jtlogdb;

    hive> use jtlogdb;

    hive> create external table flux (url string,urlname string,title string,chset string,src string,col string,lg string, je string,ec string,fv string,cn string,ref string,uagent string,stat_uv string,stat_ss string,cip string) partitioned by (reportTime string) row format delimited fields terminated by '|' location '/flux';

    1.1.1.1 访问页面a.jsp

     

     

    1.2.3.5 查询数据

    hive> select * from flux;

    查询不到数据,因为分区信息还不能识别。

    1.2.3.6 增加分区信息

    hive> alter table flux add partition (reportTime='2018-03-01') location '/flux/reportTime=2018-03-01';

    hive> select * from flux;

     

    注意:Xshell会自动在最下面加信息, 执行后面命令时删除即可。

    配置错误可以删除重新配置:

    alter table flux drop partition(reportTime='2018-03-01');

    1.2.3.7 删除HDFS重来

    前面测试,会导致数据没有按照我们设定的标准,不方便查看,删除重来。

    删除HDFS目录

    ./hdfs dfs -rm -r /fluxx/reportTime=2018-03-01

    删除分区:

    alter table flux drop partition (reportTime='2018-03-01');

    1.2.3.8 访问页面

    数据有点少

    先清除IE浏览器缓存

     

     

    注意:访问地址不能用localhost,前面已经介绍过,IE浏览器处理特殊localhost再次请求时不会发送参数,所以必须用IP地址或者域名。

    3a

     

    2b

     

     

     

    不同的浏览器多访问几次,访问2a.jsp,再访问1b.jsp,把谷歌浏览器关掉(当浏览器关闭,设置ss_id会话就关闭,cookie临时文件就被删除,如果再次打开就是一个新会话),打开访问1b.jsp,共计9条访问。

     

     

    注意:Flume不是一条就立即形成一个hdfs文件,而是有一定的缓冲或者时间。所以造成FlumeData HDFS文件中数据的条数不一样。

     

    1.1.1.1 查询数据

    hive> select * from flux;

    1.1.1.1 注意事项

    一定要等所有数据写完,再创建外部分区表!!

    这里是一个大大的坑flumehfds过程中,我们不能创建外部表,一旦创建flume后面写入的数据就不会出现在外部表中。就会造成hdfs的记录数和外部表中的记录数不一致。

    怎么解决呢?一般每天凌晨两点时,无人访问时,我们再创建外部表;或者发现记录数不一致时,重新建立外部表。

    drop table fluxx;

    drop table dataclear;

    1.2.4 创建数据库仓库

    1.1.1.2 创建新表

    hive> create table dataclear(reportTime string,url string,urlname string,uvid string,ssid string,sscount string,sstime string,cip string) row format delimited fields terminated by '|';

    表名:dataclear

    字段:类型就都设置为stringsscount也设置为string

    row formate delimited fileds terminated by ‘|’用下划线分割数据

    hive> show tables;

    OK

    dataclear

    flux

    Time taken: 0.023 seconds, Fetched: 2 row(s)

    hive>

    把一个字段拆分成3个字段,利用hive的内置函数split进行拆分

    hive> select stat_ss from flux limit 1; #方便厕所只取一条

    OK

    7447647975_5_1519085238365

    Time taken: 0.106 seconds, Fetched: 1 row(s)

     

    hive> select stat_ss,split(stat_ss,"_") from flux limit 1;

    OK

    7447647975_5_1519085238365 ["7447647975","5","1519085238365"]

    Time taken: 0.123 seconds, Fetched: 1 row(s)

     

    hive> select stat_ss,split(stat_ss,"_"),split(stat_ss,"_")[0] from flux limit 1;

    OK

    7447647975_5_1519085238365 ["7447647975","5","1519085238365"] 7447647975

    Time taken: 0.111 seconds, Fetched: 1 row(s)

    1.1.1.3 获取数组中的数据

    hive> insert overwrite table dataclear select reportTime,url,urlname,

    stat_uv,split(stat_ss,"_")[0],split(stat_ss,"_")[1],split(stat_ss,"_")[2],cip from flux;

    执行很慢

    1.2.5 业务处理数据分析

    1.2.5.1 PV

    select count(*) as pv from dataclear

     where reportTime='2018-03-01';

    实际就是记录个数

    1.2.5.2 UV

    独立访客数量一天之内所有的访问的数量一天之内uvid去重后的总数

    select count(distinct uvid) as uv from dataclear

     where reportTime='2018-03-01';

    不同浏览器,结果2

    1.2.5.3 VV

    独立会话数,一天之内所有的会话的数量,一天之内ssid去重后的总数

    select count(distinct ssid) as vv from dataclear

     where reportTime='2018-03-01';

    一个IE浏览器,一个chrome浏览器,结果2。如果中间可以把浏览器缓存情况,这样又是一个新的会话。MR计算时间比较长。

    1.2.5.4 BR

    跳出率,一天之内跳出的会话总数/会话总数,会话总数就是vv

    跳出的会话总数,就是访问页面的个数,怎么计算呢?

    hive中所有的子表都必须有别名。

    select br_taba.a/br_tabb.b as br from

    (

      select count(*) as a from

        (

          select ssid from dataclear

           where reportTime='2018-03-01'

           group by ssid having count(ssid)=1

        ) as br_tab

    ) as br_taba,

    (

      select count(distinct ssid) as b from dataclear

       where reportTime='2018-03-01'

    ) as br_tabb;

    select br_taba.a/br_tabb.b as br from (select count(*) as a from (select ssid from dataclear where reportTime='2018-03-01' group by ssid having count(ssid)=1) as br_tab) as br_taba,(select count(distinct ssid) as b from dataclear where reportTime='2018-03-01') as br_tabb;

    转成6MR过程

    保留4位小数

     

    select round(br_taba.a/br_tabb.b,4) as br from (select count(*) as a from (select ssid from dataclear where reportTime='2018-03-01' group by ssid having count(ssid)=1) as br_tab) as br_taba,(select count(distinct ssid) as b from dataclear where reportTime='2018-03-01') as br_tabb;

    分解为6job,在不同服务器中并行计算,所以非常耗时:

     

    1.2.5.5 NewIP

    新增ip总数,一天内所有ip去重后在历史数据中从未出现过的数量

    select count(distinct dataclear.cip) from dataclear

     where dataclear.reportTime='2018-03-01'

     and cip not in

     (select dc2.cip from dataclear as dc2

     where dc2.reportTime<'2018-03-01');

    select count(distinct dataclear.cip) from dataclear where dataclear.reportTime='2018-03-01' and cip not in (select dc2.cip from dataclear as dc2 where dc2.reportTime<'2018-03-01');

    就一个IP来访问,所以结果是1

    注意:子查询中不能和主查询中有相同字段名称,这样SQL无法区分。所以对子查询表重新命名dc2,这样字段就能判断其出处。

    1.2.5.6 NewCust

    新增客户数一天内所有的uvid去重在历史数据中从未出现的总数

    select count(distinct dataclear.uvid) from dataclear

     where dataclear.reportTime='2018-03-01'

     and uvid not in

     (select dc2.uvid from dataclear as dc2 where

     dc2.reportTime < '2018-03-01');

    select count(distinct dataclear.uvid) from dataclear where dataclear.reportTime='2018-03-01' and uvid not in (select dc2.uvid from dataclear as dc2 where dc2.reportTime < '2018-03-01');

    一个IE一个chrome,结果为2

    1.2.5.7 AvgTime

    平均访问时长,一天内所有会话的访问时长的平均值,一个会话的时长=会话中所有访问的时间的最大值-会话中所有访问时间的最小值

    select round(avg(atTab.usetime),4) as avgtime from

    (

     select max(sstime) - min(sstime) as usetime from dataclear

      where reportTime='2018-03-01'

      group by ssid

    ) as atTab;

     

    select round(avg(atTab.usetime),4) as avgtime from (select max(sstime) -min(sstime) as usetime from dataclear where reportTime='2018-03-01' group by ssid) as atTab;

    1.2.5.8 AvgDeep

    平均访问深度,一天内所有会话访问深度的平均值,一个会话的访问深度

    select round(avg(deep),2) as viewdeep from

    (

      select count(distinct urlname) as deep from flux

       where reportTime='2018-03-01'

       group by split(stat_uv,'_')[0]

    ) as tviewdeep;

    select round(avg(deep),2) as viewdeep from (select count(distinct urlname) as deep from flux where reportTime='2018-03-01' group by split(stat_uv,'_')[0]) as tviewdeep;

  • 相关阅读:
    Spring自动代理机制
    JUnit4 详解
    struts2 OGNL
    loj4j的配置跟使用
    junit浅学笔记二
    shell变量设置
    zookeeper使用
    [zz]Linux kernel map
    glog 使用中存在的问题
    shell中特殊字符(串)
  • 原文地址:https://www.cnblogs.com/xiangyuqi/p/8743014.html
Copyright © 2011-2022 走看看