[BZOJ2850]巧克力王国
试题描述
巧克力王国里的巧克力都是由牛奶和可可做成的。但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜
欢过于甜的巧克力。对于每一块巧克力,我们设x和y为其牛奶和可可的含量。由于每个人对于甜的程度都有自己的
评判标准,所以每个人都有两个参数a和b,分别为他自己为牛奶和可可定义的权重,因此牛奶和可可含量分别为x
和y的巧克力对于他的甜味程度即为ax + by。而每个人又有一个甜味限度c,所有甜味程度大于等于c的巧克力他都
无法接受。每块巧克力都有一个美味值h。现在我们想知道对于每个人,他所能接受的巧克力的美味值之和为多少
输入
第一行两个正整数n和m,分别表示巧克力个数和询问个数。接下来n行,每行三个整数x,y,h,含义如题目所示。再
接下来m行,每行三个整数a,b,c,含义如题目所示。
输出
输出m行,其中第i行表示第i个人所能接受的巧克力的美味值之和。
输入示例
3 3 1 2 5 3 1 4 2 2 1 2 1 6 1 3 5 1 3 7
输出示例
5 0 4
数据规模及约定
1 <= n, m <= 50000,1 <= 10^9,-10^9 <= a, b, x, y <= 10^9。
题解
题意就是统计一条给定直线下方或是上方的点权和。讨论一下 a 和 b 的正负性,然后判断一下一个矩形内是否可能有合法的点。
例如斜率为正的一条直线和一个矩形,要统计直线上方的点。若矩形左上角在直线上方则这个矩形可能有合法的点,若矩形右下角在直线上方则这个矩形内所有点都合法。
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <stack> #include <vector> #include <queue> #include <cstring> #include <string> #include <map> #include <set> using namespace std; #define LL long long const int BufferSize = 1 << 16; char buffer[BufferSize], *Head, *Tail; inline char Getchar() { if(Head == Tail) { int l = fread(buffer, 1, BufferSize, stdin); Tail = (Head = buffer) + l; } return *Head++; } LL read() { LL x = 0, f = 1; char c = Getchar(); while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); } while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); } return x * f; } #define maxn 50010 #define oo 2147483647 int n, m, Cur, ToT, root, lc[maxn], rc[maxn]; struct Node { int x[2], mx[2], mn[2]; LL val, sum; bool operator < (const Node& t) const { return x[Cur] < t.x[Cur]; } } nodes[maxn]; void maintain(int o) { int l = lc[o], r = rc[o]; for(int i = 0; i < 2; i++) { nodes[o].mx[i] = max(max(nodes[l].mx[i], nodes[r].mx[i]), nodes[o].x[i]); nodes[o].mn[i] = min(min(nodes[l].mn[i], nodes[r].mn[i]), nodes[o].x[i]); } nodes[o].sum = nodes[l].sum + nodes[r].sum + nodes[o].val; return ; } void build(int& o, int L, int R, int cur) { if(L > R){ o = 0; return ; } int M = L + R >> 1; o = M; Cur = cur; nth_element(nodes + L, nodes + M, nodes + R + 1); build(lc[o], L, M - 1, cur ^ 1); build(rc[o], M + 1, R, cur ^ 1); maintain(o); return ; } bool tx, ty; int a, b; LL c; bool all(int o) { tx ^= 1; ty ^= 1; int xx = tx ? nodes[o].mx[0] : nodes[o].mn[0], yy = ty ? nodes[o].mx[1] : nodes[o].mn[1]; tx ^= 1; ty ^= 1; return ((LL)a * xx + (LL)b * yy < c); } bool has(int o) { int xx = tx ? nodes[o].mx[0] : nodes[o].mn[0], yy = ty ? nodes[o].mx[1] : nodes[o].mn[1]; // printf("%d: %d %d %d %d ", o, xx, yy, tx, ty); return ((LL)a * xx + (LL)b * yy < c); } LL query(int o) { if(!o) return 0; LL ans = 0; // printf("o: %d %d ", o, root); if(all(lc[o])) ans += nodes[lc[o]].sum; else if(has(lc[o])) ans += query(lc[o]); if(all(rc[o])) ans += nodes[rc[o]].sum; else if(has(rc[o])) ans += query(rc[o]); int xx = nodes[o].x[0], yy = nodes[o].x[1]; if((LL)a * xx + (LL)b * yy < c) ans += nodes[o].val; return ans; } int main() { nodes[0].mx[0] = nodes[0].mx[1] = -oo; nodes[0].mn[0] = nodes[0].mn[1] = oo; nodes[0].sum = 0; n = read(); m = read(); LL sum = 0; for(int i = 1; i <= n; i++) { nodes[++ToT].x[0] = read(); nodes[ToT].x[1] = read(); nodes[ToT].val = read(); sum += nodes[ToT].val; } build(root, 1, n, 0); while(m--) { a = read(); b = read(); c = read(); if(a == 0 && b == 0) { if(c > 0) printf("%lld ", sum); else puts("0"); continue; } if(a == 0 && b > 0) tx = ty = 0; if(a == 0 && b < 0) tx = 0, ty = 1; if(a > 0 && b == 0) tx = ty = 0; if(a < 0 && b == 0) tx = ty = 1; if(a > 0 && b > 0) tx = ty = 0; if(a < 0 && b > 0) tx = 1, ty = 0; if(a > 0 && b < 0) tx = 0, ty = 1; if(a < 0 && b < 0) tx = ty = 1; printf("%lld ", query(root)); } return 0; }