zoukankan      html  css  js  c++  java
  • [codeforces 339]E. Three Swaps

    [codeforces 339]E. Three Swaps

    试题描述

    Xenia the horse breeder has n (n > 1) horses that stand in a row. Each horse has its own unique number. Initially, the i-th left horse has number i. That is, the sequence of numbers of horses in a row looks as follows (from left to right): 1, 2, 3, ..., n.

    Xenia trains horses before the performance. During the practice sessions, she consistently gives them commands. Each command is a pair of numbers l, r (1 ≤ l < r ≤ n). The command l, r means that the horses that are on the l-th, (l + 1)-th, (l + 2)-th, ..., r-th places from the left must be rearranged. The horses that initially stand on the l-th and r-th places will swap. The horses on the (l + 1)-th and(r - 1)-th places will swap. The horses on the (l + 2)-th and (r - 2)-th places will swap and so on. In other words, the horses that were on the segment [l, r] change their order to the reverse one.

    For example, if Xenia commanded l = 2, r = 5, and the sequence of numbers of horses before the command looked as (2, 1, 3, 4, 5, 6), then after the command the sequence will be (2, 5, 4, 3, 1, 6).

    We know that during the practice Xenia gave at most three commands of the described form. You have got the final sequence of numbers of horses by the end of the practice. Find what commands Xenia gave during the practice. Note that you do not need to minimize the number of commands in the solution, find any valid sequence of at most three commands.

    输入

    The first line contains an integer n (2 ≤ n ≤ 1000) — the number of horses in the row. The second line contains n distinct integers a1, a2, ..., an (1 ≤ ai ≤ n), where ai is the number of the i-th left horse in the row after the practice.

    输出

    The first line should contain integer k (0 ≤ k ≤ 3) — the number of commads Xenia gave during the practice. In each of the next k lines print two integers. In the i-th line print numbers li, ri (1 ≤ li < ri ≤ n) — Xenia's i-th command during the practice.

    It is guaranteed that a solution exists. If there are several solutions, you are allowed to print any of them.

    输入示例

    5
    1 4 3 2 5

    输出示例

    1
    2 4

    数据规模及约定

    见“输入

    题解

    暴搜 + 剪枝。。

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <stack>
    #include <vector>
    #include <queue>
    #include <cstring>
    #include <string>
    #include <map>
    #include <set>
    using namespace std;
    
    const int BufferSize = 1 << 16;
    char buffer[BufferSize], *Head, *Tail;
    inline char Getchar() {
        if(Head == Tail) {
            int l = fread(buffer, 1, BufferSize, stdin);
            Tail = (Head = buffer) + l;
        }
        return *Head++;
    }
    int read() {
        int x = 0, f = 1; char c = getchar();
        while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
        while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
        return x * f;
    }
    
    #define maxn 1010
    int n, A[maxn];
    struct Cmd {
    	int l, r;
    	Cmd() {}
    	Cmd(int _, int __): l(_), r(__) {}
    } cs[4];
    
    bool dfs(int k) {
    	/*for(int i = 1; i <= k; i++)
    		printf("%d %d
    ", cs[i].l, cs[i].r);
    	putchar('
    ');*/
    	bool ok = 1;
    	for(int i = 1; i <= n; i++)
    		if(A[i] != i){ ok = 0; break; }
    	if(ok) {
    		printf("%d
    ", k);
    		for(int i = k; i; i--) printf("%d %d
    ", cs[i].l, cs[i].r);
    		return 1;
    	}
    	if(k == 3) return 0;
    	for(int l = 1; l <= n; l++) if(A[l] != l && (abs(A[l] - A[l-1]) > 1 || abs(A[l] - A[l+1]) > 1)) {
    		for(int r = l + 1; r <= n; r++) if(A[r] != r && (abs(A[r] - A[r-1]) > 1 || abs(A[r] - A[r+1]) > 1)) {
    			int L = l, R = r;
    			for(int i = L; i <= (L + R >> 1); i++) swap(A[i], A[R-i+L]);
    			cs[k+1] = Cmd(L, R);
    			if(dfs(k + 1)) {
    				L = cs[k+1].l; R = cs[k+1].r;
    				for(int i = L; i <= (L + R >> 1); i++) swap(A[i], A[R-i+L]);
    				return 1;
    			}
    			L = cs[k+1].l; R = cs[k+1].r;
    			for(int i = L; i <= (L + R >> 1); i++) swap(A[i], A[R-i+L]);
    		}
    	}
    	return 0;
    }
    
    int main() {
    	n = read();
    	for(int i = 1; i <= n; i++) A[i] = read();
    	A[0] = A[n+1] = -1;
    	
    	dfs(0);
    	
    	return 0;
    }
    
  • 相关阅读:
    计算器代码
    acm数论之旅(转载)---最大公约数与最小公倍数
    acm数论之旅(转载) -- 快速幂
    acm数论之旅(转载)--素数
    位运算符(转载)
    最短路问题
    并查集
    深度优先探索与广度优先探索
    ACM注意事项
    LTE Module User Documentation(翻译6)——物理误差模型、MIMO模型、天线模型
  • 原文地址:https://www.cnblogs.com/xiao-ju-ruo-xjr/p/5833937.html
Copyright © 2011-2022 走看看