[BZOJ3514]Codechef MARCH14 GERALD07加强版
试题描述
N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数。
输入
第一行四个整数N、M、K、type,代表点数、边数、询问数以及询问是否加密。
接下来M行,代表图中的每条边。
接下来K行,每行两个整数L、R代表一组询问。对于type=0的测试点,读入的L和R即为询问的L、R;对于type=1的测试点,每组询问的L、R应为L xor lastans和R xor lastans。
接下来M行,代表图中的每条边。
接下来K行,每行两个整数L、R代表一组询问。对于type=0的测试点,读入的L和R即为询问的L、R;对于type=1的测试点,每组询问的L、R应为L xor lastans和R xor lastans。
输出
K行每行一个整数代表该组询问的联通块个数。
输入示例
3 5 4 0 1 3 1 2 2 1 3 2 2 2 2 3 1 5 5 5 1 2
输出示例
2 1 3 1
数据规模及约定
对于100%的数据,1≤N、M、K≤200,000。
题解
对于每一条边,我们用 LCT 维护时间最大生成树(即如果加进来一条边成环,那么把最早加进来的边删除)。这样对于每一条边我们可以处理出它在什么时候能够“发挥作用”,意思就是加入这条边后会使得全局连通块减小 1,我们不妨令 pre[i] 表示第 i 条边在 pre[i] 时刻之后能够发挥作用,那么一个询问 [l, r] 就是询问 [l, r] 区间中 pre 数组中小于 l 的数有多少个,主席树即可。
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cctype> #include <algorithm> using namespace std; int read() { int x = 0, f = 1; char c = getchar(); while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); } while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); } return x * f; } #define maxn 200010 #define maxm 200010 #define maxnode 500010 #define oo 2147483647 struct Node { int val, mnv; bool rev; Node(): rev(0) {} Node(int _): val(_) {} } ns[maxnode]; int fa[maxnode], ch[maxnode][2], S[maxn], top; bool isrt(int u) { return !fa[u] || (ch[fa[u]][0] != u && ch[fa[u]][1] != u); } void maintain(int o) { ns[o].mnv = ns[o].val; for(int i = 0; i < 2; i++) if(ch[o][i]) ns[o].mnv = min(ns[o].mnv, ns[ch[o][i]].mnv); return ; } void pushdown(int o) { if(!ns[o].rev) return ; swap(ch[o][0], ch[o][1]); for(int i = 0; i < 2; i++) if(ch[o][i]) ns[ch[o][i]].rev ^= 1; ns[o].rev = 0; return ; } void rotate(int u) { int y = fa[u], z = fa[y], l = 0, r = 1; if(!isrt(y)) ch[z][ch[z][1]==y] = u; if(ch[y][1] == u) swap(l, r); fa[u] = z; fa[y] = u; fa[ch[u][r]] = y; ch[y][l] = ch[u][r]; ch[u][r] = y; maintain(y); maintain(u); return ; } void splay(int u) { int t = u; S[top = 1] = t; while(!isrt(t)) S[++top] = fa[t], t = fa[t]; while(top) pushdown(S[top--]); while(!isrt(u)) { int y = fa[u], z = fa[y]; if(!isrt(y)) { if(ch[y][0] == u ^ ch[z][0] == y) rotate(u); else rotate(y); } rotate(u); } return ; } void access(int u) { splay(u); ch[u][1] = 0; maintain(u); while(fa[u]) splay(fa[u]), ch[fa[u]][1] = u, maintain(fa[u]), splay(u); return ; } void makeroot(int u) { access(u); ns[u].rev ^= 1; return ; } void link(int a, int b) { makeroot(b); fa[b] = a; return ; } void cut(int a, int b) { makeroot(a); access(b); ch[b][0] = fa[a] = 0; maintain(b); return ; } int _mnv; void query(int a, int b) { makeroot(a); access(b); _mnv = ns[b].mnv; return ; } struct Edge { int u, v; Edge() {} Edge(int _, int __): u(_), v(__) {} } es[maxm]; int pa[maxn]; int findset(int x) { return x == pa[x] ? x : pa[x] = findset(pa[x]); } #define maxNode 14400010 int pre[maxm], rt[maxm]; int ToT, sumv[maxNode], lc[maxNode], rc[maxNode]; void update(int& y, int x, int l, int r, int p) { sumv[y = ++ToT] = sumv[x] + 1; if(l == r) return ; int mid = l + r >> 1; lc[y] = lc[x]; rc[y] = rc[x]; if(p <= mid) update(lc[y], lc[x], l, mid, p); else update(rc[y], rc[x], mid + 1, r, p); return ; } int query(int o, int l, int r, int qr) { if(!o) return 0; if(r <= qr) return sumv[o]; int mid = l + r >> 1, ans = query(lc[o], l, mid, qr); if(qr > mid) ans += query(rc[o], mid + 1, r, qr); return ans; } int main() { int n = read(), m = read(), q = read(), tp = read(); for(int i = 1; i <= n; i++) ns[i] = Node(oo), maintain(i), pa[i] = i; for(int i = 1; i <= m; i++) { int u = read(), v = read(); if(u == v){ pre[i] = i; continue; } es[i] = Edge(u, v); ns[i+n] = Node(i); maintain(i + n); int U = findset(u), V = findset(v); if(U == V) { query(u, v); pre[i] = _mnv; cut(es[_mnv].u, _mnv + n); cut(_mnv + n, es[_mnv].v); link(u, i + n); link(i + n, v); } else { pa[V] = U; pre[i] = 0; link(u, i + n); link(i + n, v); } } for(int i = 1; i <= m; i++) update(rt[i], rt[i-1], 0, m, pre[i]); int lst = 0; while(q--) { int l = read() ^ lst * tp, r = read() ^ lst * tp; printf("%d ", lst = n - (query(rt[r], 0, m, l - 1) - query(rt[l-1], 0, m, l - 1))); } return 0; }