[BZOJ3206][Apio2013]道路费用
试题描述
输入
第一行包含三个由空格隔开的整数N,M和K。接下来的 M行描述最开始的M 条道路。这M行中的第i行包含由空格隔开的整数ai,bi和c i,表示有一条在a i和b i之间,费用为c i的双向道路。接下来的K行描述新建的K条道路。这 K行中的第i行包含由空格隔开的整数 xi和yi,表示有一条连接城镇xi和yi新道路。最后一行包含N个由空格隔开的整数,其中的第j个为pj,表示从城镇j 前往城镇 1的人数。输入也满足以下约束条件。1 ≤ N ≤ 100000;1 ≤ K ≤ 20;1 ≤ M ≤ 300000;对每个i和j,1 ≤ ci, pj ≤ 10^6;
输出
你的程序必须输出恰好一个整数到标准输出,表示能获得的最大的收入。
输入示例
5 5 1 3 5 2 1 2 3 2 3 5 2 4 4 4 3 6 1 3 10 20 30 40 50
输出示例
400
数据规模及约定
见“输入”
题解
先强制 K 条边都选,即把它们先都放到图里。那么现在如果图是不连通的,我们就需要按边权从小到大依次往里加入那 M 条边直到联通,那么这一步中我加入的边是所有方案中都必选的边。
接下来,把图中的边清空,加入必选边,连通块缩成点,这样我们会得到一个点数不超过 K + 1 的图,令此图为新图(注意,新图中不包含任何边,只有那至多 K + 1 个点),同时 M 条边中必选边之外的边如果放在新图中会有很多重边,将这些重边合并,于是压缩成了最多 K2 条边。然后我们二进制枚举 K 条边是否选取,对于一个必选的属于 Mr.Greedy 的边的集合 S,在新图中加入集合 S 中的所有边,如果图不连通,我们就需要用那 K2 条边中的某些边连通整个图(令这些边为K2必选边);重新在新图中加入K2必选边,连通块缩点后加入集合 S 中的边我们就得到了一棵只包含 S 中的边的树;那么再依次找 K2 里非必选的边(记得重标号,因为刚刚又缩了一次点),对于一条这样的边 (u, v),在树上路径 (u, v) 上所有边的权值的最大值需要和这条边 (u, v) 的权值取 min。
还是贴代码吧。。。。。
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cctype> #include <algorithm> using namespace std; int read() { int x = 0, f = 1; char c = getchar(); while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); } while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); } return x * f; } #define maxn 100010 #define maxk 25 #define maxm 300010 #define oo 2147483647 #define LL long long int n, K, M, Peo[maxn]; struct Edge { int u, v, w; Edge() {} Edge(int _1, int _2, int _3): u(_1), v(_2), w(_3) {} bool operator < (const Edge& t) const { return w < t.w; } } es[maxm], ek_own[maxk], ek[maxk*maxk]; bool used[maxm]; int K_id[maxn], G[maxk][maxk]; LL siz[maxk], reas[maxk]; int fa[maxn]; int findset(int x) { return x == fa[x] ? x : fa[x] = findset(fa[x]); } int m, head[maxk], nxt[maxk<<1], to[maxk<<1], eid[maxk<<1]; void AddEdge(int a, int b, int c) { to[++m] = b; eid[m] = c; nxt[m] = head[a]; head[a] = m; swap(a, b); to[++m] = b; eid[m] = c; nxt[m] = head[a]; head[a] = m; return ; } int S[maxk], top; bool dfs(int u, int pa, int s, int t, int w) { if(u == t) { int U = findset(s); for(int i = 1; i <= top; i++) { ek_own[eid[S[i]]].w = min(ek_own[eid[S[i]]].w, w); // printf("update %d: %d ", eid[S[i]], w); s = to[S[i]]; fa[findset(s)] = U; } return 1; } for(int e = head[u]; e; e = nxt[e]) if(to[e] != pa) { S[++top] = e; if(dfs(to[e], u, s, t, w)) return 1; top--; } return 0; } LL trs[maxk], ans, tmp; void build(int u, int pa) { trs[u] = reas[u]; for(int e = head[u]; e; e = nxt[e]) if(to[e] != pa) { build(to[e], u); trs[u] += trs[to[e]]; // printf("trs: %lld ", trs[to[e]]); tmp += trs[to[e]] * ek_own[eid[e]].w; } return ; } int main() { // freopen("data.in", "r", stdin); n = read(); M = read(); K = read(); for(int i = 1; i <= M; i++) { int a = read(), b = read(), c = read(); es[i] = Edge(a, b, c); } for(int i = 1; i <= n; i++) fa[i] = i; for(int i = 1; i <= K; i++) { int a = read(), b = read(); ek_own[i] = Edge(a, b, oo); int U = findset(a), V = findset(b); if(U != V) fa[V] = U; } for(int i = 1; i <= n; i++) Peo[i] = read(); sort(es + 1, es + M + 1); for(int i = 1; i <= M; i++) { Edge& e = es[i]; int U = findset(e.u), V = findset(e.v); if(U != V) used[i] = 1, fa[V] = U; } for(int i = 1; i <= n; i++) fa[i] = i; for(int i = 1; i <= M; i++) if(used[i]) fa[findset(es[i].v)] = findset(es[i].u); // above: get K connected_block int cntk = 0; for(int i = 1; i <= n; i++) { int u = findset(i); if(!K_id[u]) K_id[u] = ++cntk; siz[K_id[i] = K_id[u]] += Peo[i]; } // above: get connected_block's id for(int i = 1; i <= K; i++) { Edge& e = ek_own[i]; e.u = K_id[e.u]; e.v = K_id[e.v]; } for(int i = 1; i <= cntk; i++) for(int j = 1; j <= cntk; j++) G[i][j] = oo; for(int i = 1; i <= M; i++) if(!used[i]) { Edge& e = es[i]; int u = K_id[e.u], v = K_id[e.v]; G[u][v] = G[v][u] = min(G[u][v], e.w); } int cek = 0; for(int i = 1; i <= cntk; i++) for(int j = i + 1; j <= cntk; j++) if(G[i][j] < oo) ek[++cek] = Edge(i, j, G[i][j]); sort(ek + 1, ek + cek + 1); // above: get prepared, ek means edges which don't belong to Mr.Greedy /*for(int i = 1; i <= n; i++) printf("%d%c", K_id[i], i < n ? ' ' : ' '); for(int i = 1; i <= cntk; i++) printf("%lld%c", siz[i], i < cntk ? ' ' : ' '); for(int i = 1; i <= cek; i++) printf("%d %d: %d ", ek[i].u, ek[i].v, ek[i].w); // */ int all = (1 << K) - 1; for(int S = 0; S <= all; S++) { // printf("here %d %d %d ", cntk, K, cek); for(int i = 1; i <= cntk; i++) fa[i] = i; bool ok = 1; for(int i = 1; i <= K; i++) if(S >> i - 1 & 1) { Edge& e = ek_own[i]; int U = findset(e.u), V = findset(e.v); if(U == V){ ok = 0; break; } fa[V] = U; } if(!ok) continue; for(int i = 1; i <= cek; i++) used[i] = 0; for(int i = 1; i <= cek; i++) { Edge& e = ek[i]; int U = findset(e.u), V = findset(e.v); if(U != V) used[i] = 1, fa[V] = U; } for(int i = 1; i <= cntk; i++) fa[i] = i; for(int i = 1; i <= cek; i++) if(used[i]) fa[findset(ek[i].v)] = findset(ek[i].u); int cntn = 0; for(int i = 1; i <= cntk; i++) K_id[i] = reas[i] = 0; for(int i = 1; i <= cntk; i++) { int u = findset(i); if(!K_id[u]) K_id[u] = ++cntn; reas[K_id[i] = K_id[u]] += siz[i]; } // printf("trs: "); for(int i = 1; i <= cntn; i++) printf("%lld%c", reas[i], i < cntn ? ' ' : ' '); m = 0; memset(head, 0, sizeof(head)); for(int i = 1; i <= K; i++) if(S >> i - 1 & 1) { Edge& e = ek_own[i]; e.w = oo; AddEdge(K_id[e.u], K_id[e.v], i); } // printf("here2 %d %d ", cntn, m); for(int i = 1; i <= cntn; i++) fa[i] = i; for(int i = 1; i <= cek; i++) if(!used[i]) { Edge e = Edge(K_id[ek[i].u], K_id[ek[i].v], ek[i].w); int U = findset(e.u), V = findset(e.v); if(U != V) top = 0, dfs(e.u, 0, e.u, e.v, e.w); } tmp = 0; build(1, 0); // printf("tmp: %lld ", tmp); ans = max(ans, tmp); } printf("%lld ", ans); return 0; }
我都要写吐了。。。。。