zoukankan      html  css  js  c++  java
  • Facebook Detectron2 Mask-RCNN 安装踩坑

    使用FaceBook官方github repo(网址),按照官方教程一步一步来,有几个地方有问题,记录一下,蓝色是官方命令,红色是修改的命令

    # first, make sure that your conda is setup properly with the right environment
    # for that, check that `which conda`, `which pip` and `which python` points to the
    # right path. From a clean conda env, this is what you need to do
    
    conda create --name maskrcnn_benchmark -y
    conda activate maskrcnn_benchmark
    
    # this installs the right pip and dependencies for the fresh python
    conda install ipython pip
    
    # maskrcnn_benchmark and coco api dependencies
    pip install ninja yacs cython matplotlib tqdm opencv-python
    
    # follow PyTorch installation in https://pytorch.org/get-started/locally/
    # we give the instructions for CUDA 9.0
    conda install -c pytorch pytorch-nightly torchvision cudatoolkit=9.0
    conda install pytorch torchvision cudatoolkit=10.2 -c pytorch-nightly
    
    export INSTALL_DIR=$PWD
    
    # install pycocotools
    cd $INSTALL_DIR
    git clone https://github.com/cocodataset/cocoapi.git
    cd cocoapi/PythonAPI
    python setup.py build_ext install
    
    # install cityscapesScripts
    cd $INSTALL_DIR
    git clone https://github.com/mcordts/cityscapesScripts.git
    cd cityscapesScripts/
    python setup.py build_ext install
    
    # install apex
    cd $INSTALL_DIR
    git clone https://github.com/NVIDIA/apex.git
    cd apex
    python setup.py install --cuda_ext --cpp_ext
    
    # install PyTorch Detection
    cd $INSTALL_DIR
    git clone https://github.com/facebookresearch/maskrcnn-benchmark.git
    cd maskrcnn-benchmark
    
    export CUDA_HOME=/usr/local/cuda
    cuda_dir="maskrcnn_benchmark/csrc/cuda"
    perl -i -pe 's/AT_CHECK/TORCH_CHECK/' $cuda_dir/deform_pool_cuda.cu $cuda_dir/deform_conv_cuda.cu

    # the following will install the lib with # symbolic links, so that you can modify # the files if you want and won't need to # re-build it python setup.py build develop unset INSTALL_DIR # or if you are on macOS # MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build develop
  • 相关阅读:
    Mac OS X各版本号的历史费用和升级关系
    Openlayers2中统计图的实现
    CentOS下Redisserver安装配置
    最小生成树算法
    机器学习---支持向量机(SVM)
    Android HttpURLConnection源代码分析
    Lighttpd1.4.20源代码分析 笔记 状态机之错误处理和连接关闭
    <html>
    【LeetCode-面试算法经典-Java实现】【059-Spiral Matrix II(螺旋矩阵II)】
    软件开发中的11个系统思维定律
  • 原文地址:https://www.cnblogs.com/xiaoaoran/p/15306027.html
Copyright © 2011-2022 走看看