zoukankan      html  css  js  c++  java
  • tensorflow中张量的理解

    自己通过网上查询的有关张量的解释,稍作整理。

    TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.

    在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.

        t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

    你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.

    数学实例Python 例子
    0 纯量 (只有大小) s = 483
    1 向量(大小和方向) v = [1.1, 2.2, 3.3]
    2 矩阵(数据表) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    3 3阶张量 (数据立体) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
    n n阶 (自己想想看) ....

    张量是所有深度学习框架中最核心的组件,因为后续的所有运算和优化算法都是基于张量进行的。几何代数中定义的张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量。

    举例来说,我们可以将任意一张RGB彩色图片表示成一个三阶张量(三个维度分别是图片的高度、宽度和色彩数据)。如下图所示是一张普通的水果图片,按照RGB三原色表示,其可以拆分为三张红色、绿色和蓝色的灰度图片,如果将这种表示方法用张量的形式写出来,就是图中最下方的那张表格。

    这里写图片描述

    这里写图片描述

    图中只显示了前5行、320列的数据,每个方格代表一个像素点,其中的数据[1.0, 1.0, 1.0]即为颜色。假设用[1.0, 0, 0]表示红色,[0, 1.0, 0]表示绿色,[0, 0, 1.0]表示蓝色,那么如图所示,前面5行的数据则全是白色。

    将这一定义进行扩展,我们也可以用四阶张量表示一个包含多张图片的数据集,其中的四个维度分别是:图片在数据集中的编号,图片高度、宽度,以及色彩数据。

  • 相关阅读:
    uft/qtp的参数化
    华为数据之道-读书笔记
    python操作neo4j
    PyPDF2提取pdf中的信息
    时间片轮转算法
    百度地图根据类别不同做不同的标注
    操作系统-考点
    《修改代码的艺术》读书笔记
    【2021.07.06】抗争性人格的自我记录
    【2021.06.16】即将到来的毕业
  • 原文地址:https://www.cnblogs.com/xiaoboge/p/9681229.html
Copyright © 2011-2022 走看看