zoukankan      html  css  js  c++  java
  • The Boss on Mars

    The Boss on Mars

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2327    Accepted Submission(s): 718


    Problem Description
    On Mars, there is a huge company called ACM (A huge Company on Mars), and it’s owned by a younger boss.

    Due to no moons around Mars, the employees can only get the salaries per-year. There are n employees in ACM, and it’s time for them to get salaries from their boss. All employees are numbered from 1 to n. With the unknown reasons, if the employee’s work number is k, he can get k^4 Mars dollars this year. So the employees working for the ACM are very rich.

    Because the number of employees is so large that the boss of ACM must distribute too much money, he wants to fire the people whose work number is co-prime with n next year. Now the boss wants to know how much he will save after the dismissal.
     
    Input
    The first line contains an integer T indicating the number of test cases. (1 ≤ T ≤ 1000) Each test case, there is only one integer n, indicating the number of employees in ACM. (1 ≤ n ≤ 10^8)
     
    Output
    For each test case, output an integer indicating the money the boss can save. Because the answer is so large, please module the answer with 1,000,000,007.
     
    Sample Input
    2 4 5
     
    Sample Output
    82 354
    Hint
    Case1: sum=1+3*3*3*3=82 Case2: sum=1+2*2*2*2+3*3*3*3+4*4*4*4=354
     
     
    http://acm.hdu.edu.cn/showproblem.php?pid=4059
     
    ///这题主要是公式问题,然后稍微对容斥原理计算个数,改为mult的特殊利用即可;
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<queue>
    using namespace std;
    ///1~n这n个数的4次方和:n*(n+1)*(6*n*n*n+9*n*n+n-1)/30; 这里百度的公式;
    typedef long long ll;
    const ll N = 1e6+5;
    const ll mod = 1e9+7;
    ll n, ans;
     
    ll get4mult(ll mult)
    {
        return mult*mult%mod*mult%mod*mult%mod;
    }
    ll extgcd(ll a,ll b,ll &x,ll &y)
    {
        if(b==0){
            x = 1, y = 0; return a;
        }
        ll d = extgcd(b,a%b,x,y);
        ll t = x;
        x = y;
        y = t-a/b*y;
        return d;
    }
    ll inverse(ll t)
    {
        ll x, y;
        ll d = extgcd(t,mod,x,y);
        return (x%mod+mod)%mod;
    }
    ll calu(ll n)
    {
        return n*(n+1)%mod*(6*n*n%mod*n%mod+9*n*n%mod+n-1)%mod*inverse(30)%mod;
    }
    ll rongchi(ll n)
    {
        ll m = n;
        vector<ll> v;
        for(ll i = 2; i*i <= m; i++){
            if(m%i==0){
                v.push_back(i);
                while(m%i==0) m/=i;
            }
        }
        if(m>1) v.push_back(m);
        ll len = v.size();
        for(ll i = 1; i < (1<<len); i++){
            ll mult = 1, ones = 0;
            for(ll j = 0; j < len; j++){
                if(i&(1<<j)){
                    ones++;
                    mult = mult*v[j];
                }
            }
            if(ones%2) {/// 变成了 -  因为假设是原来的容斥,那么cnt指的是不互质的个数,是要被剪掉的;
                    ///而本题:也是要减掉,但是不是计算个数,而是对每一个过程有作用,减去:减变为了加,加变为了减;
                ans = ans-get4mult(mult)*calu(n/mult);
                ans = (ans%mod+mod)%mod;
            }else/// 变成了 +
            {
                ans = ans+get4mult(mult)*calu(n/mult);
                ans = (ans%mod+mod)%mod;
            }
        }
        v.clear();
        return ans;
    }
    int main()
    {
        ll T;
        cin>>T;
        while(T--)
        {
            cin>>n;
            ans = calu(n);
            printf("%lld ",rongchi(n));
        }
        return 0;
    }
  • 相关阅读:
    HTTP响应状态码
    跨域
    第一章-极限与函数
    离群点检测
    关联规则(初识)
    python分类预测模型的特点
    分类预测算法评价(初识)
    人工神经网络(初识)
    决策树(初识)
    挖掘建模
  • 原文地址:https://www.cnblogs.com/xiaochaoqun/p/4898689.html
Copyright © 2011-2022 走看看