zoukankan      html  css  js  c++  java
  • hdu1695 GCD2 容斥原理 求x属于[1,b]与y属于[1,d],gcd(x,y)=k的对数。(5,7)与(7,5)看作同一对。

    GCD
    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 10992    Accepted Submission(s): 4157
    
    
    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
    
    Yoiu can assume that a = c = 1 in all test cases.
     
    
    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     
    
    Output
    For each test case, print the number of choices. Use the format in the example.
     
    
    Sample Input
    
    2
    1 3 1 5 1
    1 11014 1 14409 9
    
     
    
    Sample Output
    
    Case 1: 9
    Case 2: 736427
    
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
    
    /**
    题目:hdu1695 GCD2
    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695
    题意:求x属于[1,b]与y属于[1,d],gcd(x,y)=k的对数。(5,7)与(7,5)看作同一对。
    思路:
    gcd(x,y)=k => gcd(x/k,y/k) = 1;
    
    则求x/k与y/k互质对数。
    
    即求:[1,b/k]与[1,d/k]之间互质的对数
    
    设x属于[1,b/k], y属于[1,d/k];
    枚举x,求x与y互质的对数。所以要预处理所有x的质因子。然后容斥处理。由于(x,y)=>(5,7),(7,5)是同一组。
    所以:答案为ans += (d/k) - x在d/k中不互质的数 - (x-1);
    */
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<cstdio>
    #include<vector>
    #include<map>
    #include<set>
    #include<cmath>
    #include<queue>
    #define LL long long
    using namespace std;
    typedef long long ll;
    typedef unsigned long long ull;
    const int maxn = 1e5+10;
    vector<int> prime[maxn];
    int flag[maxn];
    void init()
    {
        memset(flag, 0, sizeof flag);
        for(ll i = 2; i < maxn; i++){
            if(flag[i]==0){
                prime[i].push_back(i);
                for(ll j = 2*i; j < maxn; j+=i){
                    prime[j].push_back(i);
                    flag[j] = 1;
                }
            }
        }
    }
    ll rc(int pos,int n)
    {
        ll sum = 0;
        ll mult, ones;
        ll len = prime[pos].size();
        ll m = 1<<len;
        for(int i = 1; i < m; i++){
            ones = 0;
            mult = 1;
            for(int j = 0; j < len; j++){
                if(i&(1<<j)){
                    ones++;
                    mult = mult*prime[pos][j];
                    if(mult>n) break;
                }
            }
            if(ones%2==0){
                sum -= n/mult-(pos-1)/mult;
            }else
            {
                sum += n/mult-(pos-1)/mult;
            }
        }
        return n-(pos-1)-sum;
    }
    int main()
    {
        init();
        int T;
        int cas = 1;
        int a, b, c, d, k;
        cin>>T;
        while(T--)
        {
            scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
            if(k==0){
                printf("Case %d: 0
    ",cas++);continue;
            }
            if(b>d) swap(b,d);///for b<=d;
            b = b/k;
            d = d/k;
            ll ans = 0;
            if(b>=1){
                ans += d;
            }
            for(int i = 2; i <= b; i++){
                ans += rc(i,d);
            }
            printf("Case %d: %lld
    ", cas++,ans);
        }
        return 0;
    }
  • 相关阅读:
    java的eclipse集成开发环境中引入java web项目
    Uncaught SyntaxError: Unexpected identifier错误的解决方法
    layui框架和iframe总结 layui框架最简单的iframe版使用
    js不完全总结,除内置对象,DOM,BOM
    css简单总结
    机器学习之ID3决策树python算法实现
    python邮件发送正文,和图片,文件附件
    python邮件发送基础知识
    python实现带附件的邮件发送基于smtp协议
    Go语言之sync包 WaitGroup的使用
  • 原文地址:https://www.cnblogs.com/xiaochaoqun/p/6844882.html
Copyright © 2011-2022 走看看