zoukankan      html  css  js  c++  java
  • UVA1658 Admiral 拆点法解决结点容量(路径不能有公共点,容量为1的时候) 最小费用最大流

    /**
    题目:UVA1658 Admiral
    链接:https://vjudge.net/problem/UVA-1658
    题意:lrj入门经典P375
    求从s到t的两条不相交(除了s和t外,没有公共点)的路径,使得权值和最小。
    
    思路:拆点法。
    除了s,t外。把其他点都拆成两个。
    
    例如点A,拆成A和A'。A指向A'连一条容量为1,花费为0的边。
    原来指向A的,仍然指向A点。
    原来A指向其他点的,由A'指向它们。
    
    最小费用最大流求流量为2时候的最小费用即可。
    
    */
    #include<iostream>
    #include<cstring>
    #include<vector>
    #include<map>
    #include<cstdio>
    #include<algorithm>
    #include<queue>
    using namespace std;
    const int INF = 0x3f3f3f3f;
    typedef long long LL;
    const int N = 2100;
    struct Edge{
        int from, to, cap, flow, cost;
        Edge(int u,int v,int c,int f,int w):from(u),to(v),cap(c),flow(f),cost(w){}
    };
    struct MCMF{
        int n, m;
        vector<Edge> edges;
        vector<int> G[N];
        int inq[N];
        int d[N];
        int p[N];
        int a[N];
    
        void init(int n){
            this->n = n;
            for(int i = 0; i <= n; i++) G[i].clear();
            edges.clear();
        }
    
        void AddEdge(int from,int to,int cap,long long cost){
            edges.push_back(Edge(from,to,cap,0,cost));
            edges.push_back(Edge(to,from,0,0,-cost));
            m = edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
    
        bool BellmanFord(int s,int t,int &flow,long long &cost){
            for(int i = 0; i <= n; i++) d[i] = INF;
            memset(inq, 0, sizeof inq);
            d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
    
            queue<int>  Q;
            Q.push(s);
            while(!Q.empty()){
                int u = Q.front(); Q.pop();
                inq[u] = 0;
                for(int i = 0; i < G[u].size(); i++){
                    Edge& e = edges[G[u][i]];
                    if(e.cap>e.flow&&d[e.to]>d[u]+e.cost){
                        d[e.to] = d[u]+e.cost;
                        p[e.to] = G[u][i];
                        a[e.to] = min(a[u],e.cap-e.flow);
                        if(!inq[e.to]) {Q.push(e.to); inq[e.to] = 1;}
                    }
                }
            }
            if(d[t]==INF) return false;
            flow += a[t];
            cost += (long long)d[t]*(long long)a[t];
            for(int u = t; u!=s; u = edges[p[u]].from){
                edges[p[u]].flow+=a[t];
                edges[p[u]^1].flow-=a[t];
            }
            ///流量为2时的最小费用。
            if(flow==2){
                return false;
            }
            return true;
        }
        int MincostMaxflow(int s,int t,long long &cost){
            int flow = 0;
            cost = 0;
            while(BellmanFord(s,t,flow,cost));
            return flow;
        }
    };
    vector<int>node[N];
    int main()
    {
        int n, m;
        while(scanf("%d%d",&n,&m)==2)
        {
            int s = 1, t = n;
            int u, v;
            long long cost;
            MCMF mcmf;
            mcmf.init(n*2);
            for(int i = 1; i <= n; i++) node[i].clear();
            for(int i = 0; i < m; i++){
                scanf("%d%d%lld",&u,&v,&cost);
                node[u].push_back(v);
                node[u].push_back(cost);
            }
            int tot = n+1;
            for(int i = 0; i < node[1].size(); i+=2){
                mcmf.AddEdge(1,node[1][i],1,node[1][i+1]);
            }
            for(int i = 2; i < n; i++){///除了源点和汇点,其他拆点
                int from = i, to = tot++;
                mcmf.AddEdge(from,to,1,0);
                for(int j = 0; j < node[i].size(); j+=2){
                    mcmf.AddEdge(to,node[i][j],1,node[i][j+1]);
                }
            }
            for(int i = 0; i < node[n].size(); i+=2){
                mcmf.AddEdge(n,node[n][i],1,node[n][i+1]);
            }
            mcmf.MincostMaxflow(s,t,cost);
            printf("%lld
    ",cost);
        }
        return 0;
    }
  • 相关阅读:
    poj 2104 C
    2015 百度之星初赛 1 2 2015ACM/ICPC亚洲区上海站 codeforces 851
    3.10补
    3.9补
    3.8补
    3.6补
    3.5补
    3.4补
    3.3补
    2.35补
  • 原文地址:https://www.cnblogs.com/xiaochaoqun/p/7190396.html
Copyright © 2011-2022 走看看