/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻×必然不会了,于是向你来请教…… T = 10000 N, M <= 10000000 思路: f(n)表示gcd==n的对数。 g(n)表示gcd的n的倍数的对数。 u(d/p) = mu[d/p]; ans = sigma[p是质数,p<=min(n,m)]sigma[p|d] (u(d/p)*g(d)) = sigma[p是质数,p<=min(n,m)]sigma[p|d] (u(d/p)*(n/d)*(m/d)) = sigma[1<=d<=min(n,m)](n/d)*(m/d)sigma[p是d的约数且p是素数](u(d/p)); 参考:http://www.cnblogs.com/candy99/p/6209609.html */ #include <cstdio> #include <cstring> #include <algorithm> #include <set> #include <iostream> #include <vector> #include <map> using namespace std; typedef long long LL; #define ms(x,y) memset(x,y,sizeof x) typedef pair<int, int> P; const LL INF = 1e10; const int mod = 1e9 + 7; const int maxn = 1e7 + 100; int prime[maxn], tot, not_prime[maxn]; int mu[maxn], sum[maxn]; inline int read() { char c = getchar(); int x = 0; while(c<'0'||c>'9'){ c = getchar(); } while(c>='0'&&c<='9') x = x*10+c-48,c = getchar(); return x; } //法2. //线性筛 //g[i*p[j]] //当p[j]|i时结果显然为miu(i) //否则考虑mu(i*p[j]/pp),当p[j]=pp时为mu[i],p[j]!=pp时的所有的和就是-g(i),所以总的结果为mu(i)-g(i) /* void mobius() { mu[1] = 1; tot = 0; for(int i = 2; i < maxn; i++){ if(!not_prime[i]){ mu[i] = -1; prime[++tot] = i; sum[i] = 1; } for(int j = 1; prime[j]*i<maxn; j++){ not_prime[prime[j]*i] = 1; if(i%prime[j]==0){ mu[prime[j]*i] = 0; sum[prime[j]*i] = mu[i]; break; } mu[prime[j]*i] = -mu[i]; sum[prime[j]*i] = mu[i]-sum[i]; } } for(int i = 1; i < maxn; i++) sum[i] += sum[i-1]; }*/ //法1. //只需要枚举每个素数,将他的倍数的g更新就可以了 //由于有1/1+1/2+1/3+...+1/n=O(logn)这个结论 //因此每个质数枚举时是均摊O(logn)的(*n后好想,是nlogn,但是质数只有n/logn个) //而质数恰好有O(n/logn)个 因此暴力枚举就是O(n)的 void mobius() { mu[1] = 1; tot = 0; for(int i = 2; i < maxn; i++){ if(!not_prime[i]){ mu[i] = -1; prime[++tot] = i; } for(int j = 1; prime[j]*i<maxn; j++){ not_prime[prime[j]*i] = 1; if(i%prime[j]==0){ mu[prime[j]*i] = 0; break; } mu[prime[j]*i] = -mu[i]; } } for(int i = 1; i <= tot; i++){ for(int j = prime[i]; j < maxn; j+=prime[i]){ sum[j] += mu[j/prime[i]]; } } for(int i = 1; i < maxn; i++) sum[i] += sum[i-1]; } LL solve(int n,int m) { if(n>m) swap(n,m); LL ans = 0; int last; for(int i = 1; i <= n; i = last+1){ last = min(n/(n/i),m/(m/i)); ans += (LL)(sum[last]-sum[i-1])*(n/i)*(m/i); } return ans; } int main() { freopen("YYnoGCD.in","r",stdin); freopen("YYnoGCD.out","w",stdout); int n, m; int T; T = read(); mobius(); while(T--) { n = read(); m = read(); printf("%lld ",solve(n,m)); } return 0; }