概述
StreamingListener 是针对spark streaming的各个阶段的事件监听机制。
StreamingListener接口
//需要监听spark streaming中各个阶段的事件只需实现这个特质中对应的事件函数即可
//本身既有注释说明
trait StreamingListener {
/** Called when the streaming has been started */
/** streaming 启动的事件 */
def onStreamingStarted(streamingStarted: StreamingListenerStreamingStarted) { }
/** Called when a receiver has been started */
/** 接收启动事件 */
def onReceiverStarted(receiverStarted: StreamingListenerReceiverStarted) { }
/** Called when a receiver has reported an error */
def onReceiverError(receiverError: StreamingListenerReceiverError) { }
/** Called when a receiver has been stopped */
def onReceiverStopped(receiverStopped: StreamingListenerReceiverStopped) { }
/** Called when a batch of jobs has been submitted for processing. */
/** 每个批次提交的事件 */
def onBatchSubmitted(batchSubmitted: StreamingListenerBatchSubmitted) { }
/** Called when processing of a batch of jobs has started. */
/** 每个批次启动的事件 */
def onBatchStarted(batchStarted: StreamingListenerBatchStarted) { }
/** Called when processing of a batch of jobs has completed. */
/** 每个批次完成的事件 */
def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) { }
/** Called when processing of a job of a batch has started. */
def onOutputOperationStarted(
outputOperationStarted: StreamingListenerOutputOperationStarted) { }
/** Called when processing of a job of a batch has completed. */
def onOutputOperationCompleted(
outputOperationCompleted: StreamingListenerOutputOperationCompleted) { }
}
自定义StreamingListener
功能:监控批次处理时间,若超过阈值则告警,每次告警间隔2分钟
class SparkStreamingDelayListener(private val appName:String, private val duration: Int,private val times: Int) extends StreamingListener{
private val logger = LoggerFactory.getLogger("SparkStreamingDelayListener")
//每个批次完成时执行
override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted): Unit = {
val batchInfo = batchCompleted.batchInfo
val processingStartTime = batchCompleted.batchInfo.processingStartTime
val numRecords = batchCompleted.batchInfo.numRecords
val processingEndTime = batchInfo.processingEndTime
val processingDelay = batchInfo.processingDelay
val totalDelay = batchInfo.totalDelay
//将每次告警时间写入redis,用以判断告警间隔大于2分钟
val jedis = RedisClusterClient.getJedisClusterClient()
val current_time = (System.currentTimeMillis / 1000).toInt
val redis_time = jedis.get(appName)
var flag = false
if(redis_time==null || current_time-redis_time.toInt>120){
jedis.set(appName,current_time.toString)
flag = true
}
//若批次处理延迟大于批次时长指定倍数,并且告警间隔大约2分钟,则告警
if(totalDelay.get >= times * duration * 1000 && flag){
val monitorContent = appName+": numRecords ->"+numRecords+",processingDelay ->"+processingDelay.get/1000+" s,totalDelay -> "+totalDelay.get/1000+"s"
println(monitorContent)
val msg = "Streaming_"+appName+"_DelayTime:"+totalDelay.get/1000+"S"
val getURL = "http://node1:8002/message/weixin?msg="+msg
HttpClient.doGet(getURL)
}
}
}
应用
//streamingListener不需要在配置中设置,可以直接添加到streamingContext中
object My{
def main(args : Array[String]) : Unit = {
val sparkConf = new SparkConf()
val ssc = new StreamingContext(sparkConf,Seconds(20))
ssc.addStreamingListener(new SparkStreamingDelayListener("Userid2Redis", duration,times))
....
}
}
订阅关注微信公众号《大数据技术进阶》,及时获取更多大数据架构和应用相关技术文章!