一、TensorFlow安装
win 7 下安装 TensorFlow并不困难,cmd下 pip install TensorFlow即可
二、对于TensorFlow初学者,MNIST数据集试验就像是初学编程的“Hello,world”,第一次尝试并不困难,网上教程挺多。
参考博客: http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html
http://blog.csdn.net/sysstc/article/details/73468532
http://blog.csdn.net/sysstc/article/details/74910918
http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_pros.html
#coding:utf-8 from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import gzip import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) x = tf.placeholder(tf.float32,[None,784]) y_ = tf.placeholder(tf.float32,[None,10]) W = tf.Variable(tf.zeros([784,10])) b=tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x,W)+b) cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_,logits=tf.log(y))) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) init = tf.global_variables_initializer() sess = tf.InteractiveSession() sess.run(init) for i in range(1000): batch_x,batch_y = mnist.train.next_batch(100) sess.run(train_step,feed_dict={x:batch_x,y_:batch_y}) correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})) sess.close()
三、报错调试
可能会出现如下图所示错误
出现如图所示错误其实不要紧,因为程序已经正确运行,答案已经出来了,但是对于强迫症来说还是很难受,尤其是看到红色的bug,解决方法很简单,在头部加两句代码:
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2'