1、主机规划
| 序号 | 主机名 | IP地址 | 角色 |
| 1 | nn-1 | 192.168.9.21 | NameNode、mr-jobhistory、zookeeper、JournalNode |
| 2 | nn-2 | 192.168.9.22 | Secondary NameNode、JournalNode |
| 3 | dn-1 | 192.168.9.23 | DataNode、JournalNode、zookeeper、ResourceManager、NodeManager |
| 4 | dn-2 | 192.168.9.24 | DataNode、zookeeper、NodeManager |
| 5 | dn-3 | 192.168.9.25 | DataNode、NodeManager |
集群说明:
(1)、对于集群规模小于7台和以下的, 可以不做NameNode HA。
(2)、HA的集群, JournalNode节点要在3个以上, 建议设置成5个节点。JournalNode是轻量级服务, 为了本地性, 其中两个JournalNode和两台NameNode节点复用。其他JournalNode和分散在其他节点上。
(3)、HA的集群,zookeeper节点要在3个以上, 建议设置成5个或者7个节点。zookeeper可以和DataNode节点复用。
(4)、HA的集群,ResourceManager建议单独一个节点。对于较大规模的集群,且有空闲的主机资源, 可以考虑设置ResourceManager的HA。
2、主机环境设置
2.1 配置JDK
卸载OpenJDK:
--查看java版本[root@dtgr ~]# java -versionjava version "1.7.0_45"OpenJDK Runtime Environment (rhel-2.4.3.3.el6-x86_64 u45-b15)OpenJDK 64-Bit Server VM (build 24.45-b08, mixed mode)--查看安装源[root@dtgr ~]# rpm -qa | grep javajava-1.7.0-openjdk-1.7.0.45-2.4.3.3.el6.x86_64-- 卸载[root@dtgr ~]# rpm -e --nodeps java-1.7.0-openjdk-1.7.0.45-2.4.3.3.el6.x86_64--验证是否卸载成功[root@dtgr ~]# rpm -qa | grep java[root@dtgr ~]# java -version-bash: /usr/bin/java: 没有那个文件或目录
安装jdk:
-- 下载并解压java源码包[root@dtgr java]# mkdir /usr/local/java[root@dtgr java]# mv jdk-7u79-linux-x64.tar.gz /usr/local/java[root@dtgr java]# cd /usr/local/java[root@dtgr java]# tar xvf jdk-7u79-linux-x64.tar.gz[root@dtgr java]# lsjdk1.7.0_79 jdk-7u79-linux-x64.tar.gz[root@dtgr java]#--- 添加环境变量[root@dtgr java]# vim /etc/profile[root@dtgr java]# tail /etc/profileexport JAVA_HOME=/usr/local/java/jdk1.7.0_79export JRE_HOME=/usr/local/java/jdk1.7.0_79/jreexport CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib:$CLASSPATHexport PATH=$JAVA_HOME/bin:$PATH-- 生效环境变量[root@dtgr ~]# source /etc/profile-- 验证[root@dtgr ~]# java -versionjava version "1.7.0_79"Java(TM) SE Runtime Environment (build 1.7.0_79-b15)Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)[root@dtgr ~]# javac -versionjavac 1.7.0_79
2.2 修改主机名和配置主机名解析
在所有节点按照规划修改主机名, 并将主机名加入/etc/hosts文件。
修改主机名:
[root@dn-3 ~]# cat /etc/sysconfig/networkNETWORKING=yesHOSTNAME=dn-3[root@dn-3 ~]# hostname dn-3
配置/etc/hosts, 并分发到所有节点:
[root@dn-3 ~]# cat /etc/hosts127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4::1 localhost localhost.localdomain localhost6 localhost6.localdomain6192.168.9.21 nn-1192.168.9.22 nn-2192.168.9.23 dn-1192.168.9.24 dn-2192.168.9.25 dn-3
2.3 新建hadoop账户
用户和组均为hadoop, 密码为hadoop, home目录为/hadoop。
[root@dn-3 ~]# useradd -d /hadoop hadoop
2.4 配置ntp时钟同步
将nn-1主机作为时钟源)
#vi /etc/ntp.conf
#server 0.centos.pool.ntp.org
#server 1.centos.pool.ntp.org
#server 2.centos.pool.ntp.org
server nn-1
配置ntp服务自启动
#chkconfig ntpd on
启动ntp服务
#service ntpd start
2.5 关闭防火墙iptables和selinux
(1)、关闭iptables
[root@dn-3 ~]# service iptables stop[root@dn-3 ~]# chkconfig iptables off[root@dn-3 ~]# chkconfig --list | grep iptablesiptables 0:关闭 1:关闭 2:关闭 3:关闭 4:关闭 5:关闭 6:关闭[root@dn-3 ~]#
(2)、关闭selinux
[root@dn-3 ~]# setenforce 0setenforce: SELinux is disabled[root@dn-3 ~]# vim /etc/sysconfig/selinuxSELINUX=disabled
2.6 设置ssh无密码登陆
(1)、在所有节点生成密钥
所有节点, 切换到hadoop用户下,生成密钥,一路回车:
[hadoop@nn-1 ~]$ ssh-keygen -t rsa
(2)、在nn-1上面,将公钥复制到文件authorized_keys中:
命令:$ ssh 主机名 'cat ./.ssh/id_rsa.pub' >> authorized_keys
将上面的命令的主机名替换成实际的主机名, 在nn-1上面将所有的主机都执行一次,包括自己, 如下示例:
[hadoop@nn-1 ~]$ ssh nn-1 'cat ./.ssh/id_rsa.pub' >> authorized_keyshadoop@nn-1's password:[hadoop@nn-1 ~]$
(3)、设置权限
[hadoop@nn-1 .ssh]$ chmod 644 authorized_keys
(4)、将authorized_keys分发到所有节点: $HOME/.ssh/ 。
如下示例:
[hadoop@nn-1 .ssh]$ scp authorized_keys hadoop@nn-2:/hadoop/.ssh/
3、安装配置Hadoop
说明: 先在nn-1上面修改配置, 配置完毕批量分发到其他节点。
3.1 上传hadoop、zookeeper安装包
复制安装包到/hadoop目录下。
解压安装包: [hadoop@nn-1 ~]$ tar -xzvf hadoop2-js-0121.tar.gz
3.2 修改hadoop-env.sh
export JAVA_HOME=/usr/local/java/jdk1.7.0_79export HADOOP_HEAPSIZE=2000export HADOOP_NAMENODE_INIT_HEAPSIZE=10000export HADOOP_OPTS="-server $HADOOP_OPTS -Djava.net.preferIPv4Stack=true"export HADOOP_NAMENODE_OPTS="-Xmx15000m -Xms15000m -Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"
3.3 修改core-site.xml
<configuration><property><name>fs.defaultFS</name><value>hdfs://dpi</value></property><property><name>io.file.buffer.size</name><value>131072</value></property><property><name>hadoop.tmp.dir</name><value>file:/hadoop/hdfs/temp</value><description>Abase for other temporary directories.</description></property><property><name>hadoop.proxyuser.hduser.hosts</name><value>*</value></property><property><name>hadoop.proxyuser.hduser.groups</name><value>*</value></property><property><name>ha.zookeeper.quorum</name><value>dn-1:2181,dn-2:2181,dn-3:2181</value></property></configuration>
3.4 修改hdfs-site.xml
<configuration><property><name>dfs.namenode.secondary.http-address</name><value>nn-1:9001</value></property><property><name>dfs.namenode.name.dir</name><value>file:/hadoop/hdfs/name</value></property><property><name>dfs.datanode.data.dir</name><value>file:/hadoop/hdfs/data,file:/hadoopdata/hdfs/data</value></property><property><name>dfs.replication</name><value>3</value></property><property><name>dfs.webhdfs.enabled</name><value>true</value></property><property><name>dfs.nameservices</name><value>dpi</value></property><property><name>dfs.ha.namenodes.dpi</name><value>nn-1,nn-2</value></property><property><name>dfs.namenode.rpc-address.dpi.nn-1</name><value>nn-1:9000</value></property><property><name>dfs.namenode.http-address.dpi.nn-1</name><value>nn-1:50070</value></property><property><name>dfs.namenode.rpc-address.dpi.nn-2</name><value>nn-2:9000</value></property><property><name>dfs.namenode.http-address.dpi.nn-2</name><value>nn-2:50070</value></property><property><name>dfs.namenode.servicerpc-address.dpi.nn-1</name><value>nn-1:53310</value></property><property><name>dfs.namenode.servicerpc-address.dpi.nn-2</name><value>nn-2:53310</value></property><property><name>dfs.ha.automatic-failover.enabled</name><value>true</value></property><property><name>dfs.namenode.shared.edits.dir</name><value>qjournal://nn-1:8485;nn-2:8485;dn-1:8485/dpi</value></property><property><name>dfs.client.failover.proxy.provider.dpi</name><value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value></property><property><name>dfs.journalnode.edits.dir</name><value>/hadoop/hdfs/journal</value></property><property><name>dfs.ha.fencing.methods</name><value>sshfence</value></property><property><name>dfs.ha.fencing.ssh.private-key-files</name><value>/hadoop/.ssh/id_rsa</value></property></configuration>
新建配置文件中的目录:
mkdir -p /hadoop/hdfs/namemkdir -p /hadoop/hdfs/datamkdir -p /hadoop/hdfs/tempmkdir -p /hadoop/hdfs/journal授权:chmod 755 /hadoop/hdfsmkdir -p /hadoopdata/hdfs/datachmod 755 /hadoopdata/hdfs
属主和属组修改为:hadoop:hadoop
3.5 修改mapred-site.xml
<configuration><property><name>mapreduce.framework.name</name><value>yarn</value></property><property><name>mapreduce.jobhistory.address</name><value>nn-1:10020</value></property><property><name>mapreduce.jobhistory.webapp.address</name><value>nn-1:19888</value></property></configuration>
3.6 修改yarn-site.xml
<configuration><!-- Site specific YARN configuration properties --><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name><value>org.apache.hadoop.mapred.ShuffleHandler</value></property><property><name>yarn.resourcemanager.address</name><value>dn-1:8032</value></property><property><name>yarn.resourcemanager.scheduler.address</name><value>dn-1:8030</value></property><property><name>yarn.resourcemanager.resource-tracker.address</name><value>dn-1:8031</value></property><property><name>yarn.resourcemanager.admin.address</name><value>dn-1:8033</value></property><property><name>yarn.resourcemanager.webapp.address</name><value>dn-1:8088</value></property></configuration>
3.7 修改slaves
将所有的DataNode节点加入到slaves文件中:
dn-1dn-2dn-3
3.8 修改yarn-env.sh
# some Java parameters# export JAVA_HOME=/home/y/libexec/jdk1.6.0/if [ "$JAVA_HOME" != "" ]; then#echo "run java in $JAVA_HOME"JAVA_HOME=/usr/local/java/jdk1.7.0_79fiJAVA_HEAP_MAX=-Xmx15000mYARN_HEAPSIZE=15000export YARN_RESOURCEMANAGER_HEAPSIZE=5000export YARN_TIMELINESERVER_HEAPSIZE=10000export YARN_NODEMANAGER_HEAPSIZE=10000
3.9 分发配置好的hadoop目录到所有节点
[hadoop@nn-1 ~]$ scp -rp hadoop hadoop@nn-2:/hadoop[hadoop@nn-1 ~]$ scp -rp hadoop hadoop@dn-1:/hadoop[hadoop@nn-1 ~]$ scp -rp hadoop hadoop@dn-2:/hadoop[hadoop@nn-1 ~]$ scp -rp hadoop hadoop@dn-3:/hadoop
4 安装配置zookeeper
切换到hadoop目录下面, 根据规划, 三台zookeeper节点为:nn-1, dn-1, dn-2。
先在nn-1节点配置zookeeper, 然后分发至三个zookeeper节点:
4.1 在nn-1上传并解压zookeeper
4.2 修改配置文件/hadoop/zookeeper/conf/zoo.cfg
dataDir=/hadoop/zookeeper/data/dataLogDir=/hadoop/zookeeper/log/# the port at which the clients will connectclientPort=2181server.1=nn-1:2887:3887server.2=dn-1:2888:3888server.3=dn-2:2889:3889
4.3 从nn-1分发配置的zookeeper目录到其他节点
[hadoop@nn-1 ~]$ scp -rp zookeeper hadoop@dn-1:/hadoop[hadoop@nn-1 ~]$ scp -rp zookeeper hadoop@dn-2:/hadoop
4.4 在所有zk节点创建目录
[hadoop@dn-1 ~]$ mkdir /hadoop/zookeeper/data/[hadoop@dn-1 ~]$ mkdir /hadoop/zookeeper/log/
4.5 修改myid
在所有zk节点, 切换到目录/hadoop/zookeeper/data,创建myid文件:
注意:myid文件的内容为zoo.cfg文件中配置的server.后面的数字(即nn-1为1,dn-1为2,dn-2为3)。
在nn-1节点的myid内容为:
[hadoop@nn-1 data]$ echo 1 > /hadoop/zookeeper/data/myid
其他zk节点也安要求创建myid文件。
4.6 设置环境变量
$ echo "export ZOOKEEPER_HOME=/hadoop/zookeeper" >> $HOME/.bash_profile$ echo "export PATH=$ZOOKEEPER_HOME/bin:$PATH" >> $HOME/.bash_profile$ source $HOME/.bash_profile
5 集群启动
5.1 启动zookeeper
根据规划, zk的节点为nn-1、dn-1和dn-2, 在这三台节点分别启动zk:
启动命令:
[hadoop@nn-1 ~]$ /hadoop/zookeeper/bin/zkServer.sh startJMX enabled by defaultUsing config: /hadoop/zookeeper/bin/../conf/zoo.cfgStarting zookeeper ... STARTED
查看进程, 可以看到QuorumPeerMain:
[hadoop@nn-1 ~]$ jps9382 QuorumPeerMain9407 Jps
查看状态, 可以看到Mode: follower, 说明这是zk的从节点:
[hadoop@nn-1 ~]$ /hadoop/zookeeper/bin/zkServer.sh statusJMX enabled by defaultUsing config: /hadoop/zookeeper/bin/../conf/zoo.cfgMode: follower
查看状态, 可以看到Mode: leader, 说明这是zk的leader节点:
[hadoop@dn-1 data]$ /hadoop/zookeeper/bin/zkServer.sh statusJMX enabled by defaultUsing config: /hadoop/zookeeper/bin/../conf/zoo.cfgMode: leader
5.2 格式化zookeeper集群(只做一次)(机器nn-1上执行)
[hadoop@nn-1 ~]$ /hadoop/hadoop/bin/hdfs zkfc -formatZK
中间有个交互的步骤, 输入Y:

进入zk, 查看是否创建成功:
[hadoop@nn-1 bin]$ ./zkCli.sh

5.3 启动zkfc(机器nn-1,nn-2上执行)
[hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start zkfcstarting zkfc, logging to /hadoop/hadoop/logs/hadoop-hadoop-zkfc-nn-1.out
使用jps, 可以看到进程DFSZKFailoverController:
[hadoop@nn-1 ~]$ jps9681 Jps9638 DFSZKFailoverController9382 QuorumPeerMain
5.4 启动journalnode
根据规划, 启动journalnode节点为nn-1、nn-2和dn-1, 在这三个节点分别使用如下的命令启动服务:
[hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start journalnodestarting journalnode, logging to /hadoop/hadoop/logs/hadoop-hadoop-journalnode-nn-1.out
使用jps命令可以看到进程JournalNode:
[hadoop@nn-1 ~]$ jps9714 JournalNode9638 DFSZKFailoverController9382 QuorumPeerMain9762 Jps
5.5 格式化namenode(机器nn-1上执行)
[hadoop@nn-1 ~]$ /hadoop/hadoop/bin/hadoop namenode -format
查看日志信息:

5.6 启动namenode(机器nn-1上执行)
[hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start namenodestarting namenode, logging to /hadoop/hadoop/logs/hadoop-hadoop-namenode-nn-1.out
使用jps命令可以看到进程NameNode:
[hadoop@nn-1 ~]$ jps9714 JournalNode9638 DFSZKFailoverController9382 QuorumPeerMain10157 NameNode10269 Jps
5.7 格式化secondnamnode(机器nn-2上执行)
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs namenode -bootstrapStandby
部分日志如下:

5.8 启动namenode(机器nn-2上执行)
[hadoop@nn-2 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start namenodestarting namenode, logging to /hadoop/hadoop/logs/hadoop-hadoop-namenode-nn-2.out
使用jps命令可以看到进程NameNode:
[hadoop@nn-2 ~]$ jps53990 NameNode54083 Jps53824 JournalNode53708 DFSZKFailoverController
5.9 启动datanode(机器dn-1到dn-3上执行)
[hadoop@dn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start datanode
使用jps可以看到DataNode进程:
[hadoop@dn-1 temp]$ jps57007 Jps56927 DataNode56223 QuorumPeerMain
5.10 启动resourcemanager
根据规划,resourcemanager服务在节点dn-1上面, 在dn-1上面启动resourcemanager:
[hadoop@dn-1 ~]$ /hadoop/hadoop/sbin/yarn-daemon.sh start resourcemanagerstarting resourcemanager, logging to /hadoop/hadoop/logs/yarn-hadoop-resourcemanager-dn-1.out
使用jps, 可以看到进程ResourceManager:
[hadoop@dn-1 ~]$ jps57173 QuorumPeerMain58317 Jps57283 JournalNode58270 ResourceManager58149 DataNode
5.11 启动jobhistory
根据规划, jobhistory服务在nn-1上面, 使用如下命令启动:
[hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/mr-jobhistory-daemon.sh start historyserverstarting historyserver, logging to /hadoop/hadoop/logs/mapred-hadoop-historyserver-nn-1.out
使用jps, 可以看到进程JobHistoryServer:
[hadoop@nn-1 ~]$ jps11210 JobHistoryServer9714 JournalNode9638 DFSZKFailoverController9382 QuorumPeerMain11039 NameNode11303 Jps
5.12 启动NodeManager
根据规划, dn-1、dn-2和dn-3是nodemanager, 在这三个节点启动NodeManager:
[hadoop@dn-1 ~]$ /hadoop/hadoop/sbin/yarn-daemon.sh start nodemanagerstarting nodemanager, logging to /hadoop/hadoop/logs/yarn-hadoop-nodemanager-dn-1.out
使用jps可以看到进程NodeManager:
[hadoop@dn-1 ~]$ jps58559 NodeManager57173 QuorumPeerMain58668 Jps57283 JournalNode58270 ResourceManager58149 DataNode
6、安装后查看和验证
6.1 HDFS相关操作命令
查看NameNode状态的命令
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -getServiceState nn-1
手工切换,将active的NameNode从nn-1切换到nn-2 。
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -DfSHAadmin -failover nn-1 nn-2

NameNode健康检查:
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -checkHealth nn-1

将其中一台NameNode给kill后, 查看健康状态:

查看所有的DataNode列表:
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs dfsadmin -report | more

查看正常DataNode列表:
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs dfsadmin -report -live17/03/01 22:49:43 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicableConfigured Capacity: 224954695680 (209.51 GB)Present Capacity: 180557139968 (168.16 GB)DFS Remaining: 179963428864 (167.60 GB)DFS Used: 593711104 (566.21 MB)DFS Used%: 0.33%Under replicated blocks: 2Blocks with corrupt replicas: 0Missing blocks: 0-------------------------------------------------Live datanodes (3):Name: 192.168.9.23:50010 (dn-1)Hostname: dn-1Rack: /rack2Decommission Status : NormalConfigured Capacity: 74984898560 (69.84 GB)DFS Used: 197902336 (188.73 MB)Non DFS Used: 14869356544 (13.85 GB)DFS Remaining: 59917639680 (55.80 GB)DFS Used%: 0.26%DFS Remaining%: 79.91%Configured Cache Capacity: 0 (0 B)Cache Used: 0 (0 B)Cache Remaining: 0 (0 B)Cache Used%: 100.00%Cache Remaining%: 0.00%Xceivers: 1Last contact: Wed Mar 01 22:49:42 CST 2017
查看异常DataNode列表:
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs dfsadmin -report -dead
获取指定DataNode信息(运行时间及版本等):
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -checkHealth nn-217/03/01 22:55:01 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -checkHealth nn-117/03/01 22:55:08 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
6.2 YARN相关的命令
查看resourceManager状态的命令:
[hadoop@dn-1 hadoop]$ yarn rmadmin -getServiceState rm1- active
[hadoop@dn-1 hadoop]$ yarn rmadmin -getServiceState rm2- standby
查看所有的yarn节点:
[hadoop@dn-1 hadoop]$ /hadoop/hadoop/bin/yarn node -all -list17/03/01 23:06:40 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicableTotal Nodes:3Node-Id Node-State Node-Http-Address Number-of-Running-Containersdn-2:55506 RUNNING dn-2:8042 0dn-1:56447 RUNNING dn-1:8042 0dn-3:37533 RUNNING dn-3:8042 0
查看正常的yarn节点:
[hadoop@dn-1 hadoop]$ /hadoop/hadoop/bin/yarn node -list17/03/01 23:07:41 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicableTotal Nodes:3Node-Id Node-State Node-Http-Address Number-of-Running-Containersdn-2:55506 RUNNING dn-2:8042 0dn-1:56447 RUNNING dn-1:8042 0dn-3:37533 RUNNING dn-3:8042 0
查看指定节点的信息:
/hadoop/hadoop/bin/yarn node -status <NodeId>
[hadoop@dn-1 hadoop]$ /hadoop/hadoop/bin/yarn node -status dn-2:5550617/03/01 23:08:16 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicableNode Report :Node-Id : dn-2:55506Rack : /default-rackNode-State : RUNNINGNode-Http-Address : dn-2:8042Last-Health-Update : 星期三 01/三月/17 11:06:21:373CSTHealth-Report :Containers : 0Memory-Used : 0MBMemory-Capacity : 8192MBCPU-Used : 0 vcoresCPU-Capacity : 8 vcoresNode-Labels :
查看当前运行的MapReduce任务:
[hadoop@dn-2 ~]$ /hadoop/hadoop/bin/yarn application -list17/03/01 23:10:09 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicableTotal number of applications (application-types: [] and states: [SUBMITTED, ACCEPTED, RUNNING]):1Application-Id Application-Name Application-Type User Queue State Final-State Progress Tracking-URLapplication_1488375590901_0004 QuasiMonteCarlo MAPREDUCE hadoop default RUNNING UNDEFINED
6.3 使用自带的例子测试
[hadoop@dn-1 ~]$ cd hadoop/[hadoop@dn-1 hadoop]$[hadoop@dn-1 hadoop]$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar pi 2 200
[hadoop@dn-1 hadoop]$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar pi 2 200Number of Maps = 2Samples per Map = 20017/02/28 01:51:12 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicableWrote input for Map #0Wrote input for Map #1Starting Job17/02/28 01:51:15 INFO input.FileInputFormat: Total input paths to process : 217/02/28 01:51:15 INFO mapreduce.JobSubmitter: number of splits:217/02/28 01:51:15 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1488216892564_000117/02/28 01:51:16 INFO impl.YarnClientImpl: Submitted application application_1488216892564_000117/02/28 01:51:16 INFO mapreduce.Job: The url to track the job: http://dn-1:8088/proxy/application_1488216892564_0001/17/02/28 01:51:16 INFO mapreduce.Job: Running job: job_1488216892564_000117/02/28 01:51:24 INFO mapreduce.Job: Job job_1488216892564_0001 running in uber mode : false17/02/28 01:51:24 INFO mapreduce.Job: map 0% reduce 0%17/02/28 01:51:38 INFO mapreduce.Job: map 100% reduce 0%17/02/28 01:51:49 INFO mapreduce.Job: map 100% reduce 100%17/02/28 01:51:49 INFO mapreduce.Job: Job job_1488216892564_0001 completed successfully17/02/28 01:51:50 INFO mapreduce.Job: Counters: 49File System CountersFILE: Number of bytes read=50FILE: Number of bytes written=326922FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=510HDFS: Number of bytes written=215HDFS: Number of read operations=11HDFS: Number of large read operations=0HDFS: Number of write operations=3Job CountersLaunched map tasks=2Launched reduce tasks=1Data-local map tasks=2Total time spent by all maps in occupied slots (ms)=25604Total time spent by all reduces in occupied slots (ms)=7267Total time spent by all map tasks (ms)=25604Total time spent by all reduce tasks (ms)=7267Total vcore-seconds taken by all map tasks=25604Total vcore-seconds taken by all reduce tasks=7267Total megabyte-seconds taken by all map tasks=26218496Total megabyte-seconds taken by all reduce tasks=7441408Map-Reduce FrameworkMap input records=2Map output records=4Map output bytes=36Map output materialized bytes=56Input split bytes=274Combine input records=0Combine output records=0Reduce input groups=2Reduce shuffle bytes=56Reduce input records=4Reduce output records=0Spilled Records=8Shuffled Maps =2Failed Shuffles=0Merged Map outputs=2GC time elapsed (ms)=419CPU time spent (ms)=6940Physical memory (bytes) snapshot=525877248Virtual memory (bytes) snapshot=2535231488Total committed heap usage (bytes)=260186112Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format CountersBytes Read=236File Output Format CountersBytes Written=97Job Finished in 35.466 secondsEstimated value of Pi is 3.17000000000000000000
6.4 查看NameNode
链接分别为:
192.168.9.21和192.168.9.22分别为NameNode和Secondary NameNode的地址。


6.5 查看NameNode 的HA切换是否正常
将nn-1上状态为active的NameNode进程kill, 查看nn-2上的NameNode能否从standby切换为active:


6.6 查看RM页面
其中192.168.9.23为Resource服务所在的节点。

7、安装Spark
规划, 在现有的Hadoop集群安装spark集群:
master节点: nn-1
worker节点: nn-2、dn-1、dn-2、dn-3。
7.1 安装配置Scala
上传安装包到nn-1的/hadoop目录下面,解压:
[hadoop@nn-1 ~]$ tar -xzvf spark-1.6.0-bin-hadoop2.6.tgz
环境变量后面统一配置。
7.2 安装spark
上传安装包spark-1.6.0-bin-hadoop2.6.tgz到nn-1的目录/hadoop下面, 解压
[hadoop@nn-1 ~]$ tar -xzvf spark-1.6.0-bin-hadoop2.6.tgz
进入目录:/hadoop/spark-1.6.0-bin-hadoop2.6/conf
复制生成文件spark-env.sh和slaves:
[hadoop@nn-1 conf]$ pwd/hadoop/spark-1.6.0-bin-hadoop2.6/conf[hadoop@nn-1 conf]$ cp spark-env.sh.template spark-env.sh[hadoop@nn-1 conf]$ cp slaves.template slaves
编辑spark-env.sh, 加入如下内容:
export JAVA_HOME=/usr/local/java/jdk1.7.0_79export SCALA_HOME=/hadoop/scala-2.11.7export SPARK_HOME=/hadoop/spark-1.6.0-bin-hadoop2.6export SPARK_MASTER_IP=nn-1export SPARK_WORKER_MEMORY=2gexport HADOOP_CONF_DIR=/hadoop/hadoop/etc/hadoop
SPARK_WORKER_MEMORY根据实际情况配置。
编辑spark-env.sh, 加入如下内容:slaves
nn-2dn-1dn-2dn-3
slaves指定的是worker节点。
7.3 配置环境变量
[hadoop@nn-1 ~]$ vim .bash_profile
追加如下内容:
export HADOOP_HOME=/hadoop/hadoopexport SCALA_HOME=/hadoop/scala-2.11.7export SPARK_HOME=/hadoop/spark-1.6.0-bin-hadoop2.6export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$SCALA_HOME/bin:$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH
7.4 分发上面配置好的scala和spark目录到其他节点
[hadoop@nn-1 bin]$ cd /hadoop[hadoop@nn-1 ~]$ scp -rp spark-1.6.0-bin-hadoop2.6 hadoop@dn-1:/hadoop[hadoop@nn-1 ~]$ scp -rp scala-2.11.7 hadoop@dn-1:/hadoop
7.5 启动Spark集群
[hadoop@nn-1 ~]$ /hadoop/spark-1.6.0-bin-hadoop2.6/sbin/start-all.sh
在nn-1和其他slaves节点查看进程:
在nn-1节点, 可以看到Master进程:
[hadoop@nn-1 ~]$ jps2473 JournalNode2541 NameNode4401 Jps2399 DFSZKFailoverController2687 JobHistoryServer2775 Master2351 QuorumPeerMain
在slaves节点可以看到Worker进程:
[hadoop@dn-1 ~]$ jps2522 NodeManager3449 Jps2007 QuorumPeerMain2141 DataNode2688 Worker2061 JournalNode2258 ResourceManager
查看spark页面:

7.6 运行测试案例
./bin/spark-submit --class org.apache.spark.examples.SparkPi
--master yarn --deploy-mode cluster
--driver-memory 100M
--executor-memory 200M
--executor-cores 1
--queue default
lib/spark-examples*.jar 10
或者:
./bin/spark-submit --class org.apache.spark.examples.SparkPi
--master yarn --deploy-mode cluster
--executor-cores 1
--queue default
lib/spark-examples*.jar 10



8、配置机架感知
在nn-1和nn-2节点的配置文件/hadoop/hadoop/etc/hadoop/core-site.xml加入如下配置:
<property><name>topology.script.file.name</name><value>/hadoop/hadoop/etc/hadoop/RackAware.py</value></property>
新增文件:/hadoop/hadoop/etc/hadoop/RackAware.py,内容如下:
#!/usr/bin/python#-*-coding:UTF-8 -*-import sysrack = {"dn-1":"rack2","dn-2":"rack1","dn-3":"rack1","192.168.9.23":"rack2","192.168.9.24":"rack1","192.168.9.25":"rack1",}if __name__=="__main__":print "/" + rack.get(sys.argv[1],"rack0")
设置权限:
[root@nn-1 hadoop]# chmod +x RackAware.py[root@nn-1 hadoop]# ll RackAware.py-rwxr-xr-x 1 hadoop hadoop 294 3月 1 21:24 RackAware.py
重启nn-1和nn-2上的NameNode服务:
[hadoop@nn-1 ~]$ hadoop-daemon.sh stop namenodestopping namenode[hadoop@nn-1 ~]$ hadoop-daemon.sh start namenodestarting namenode, logging to /hadoop/hadoop/logs/hadoop-hadoop-namenode-nn-1.out
查看日志:
[root@nn-1 logs]# pwd/hadoop/hadoop/logs[root@nn-1 logs]# vim hadoop-hadoop-namenode-nn-1.log

使用命令查看拓扑:
[hadoop@dn-3 ~]$ hdfs dfsadmin -printTopology17/03/02 00:21:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicableRack: /rack1192.168.9.24:50010 (dn-2)192.168.9.25:50010 (dn-3)Rack: /rack2192.168.9.23:50010 (dn-1)