zoukankan      html  css  js  c++  java
  • HDU 1402

    http://acm.hdu.edu.cn/showproblem.php?pid=1402

    fft做O(nlog(n))大数乘法,kuangbin的模板

    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #include <algorithm>
    #include <math.h>
    using namespace std;
    const double PI = acos(-1.0);
    //复数结构体
    struct Complex
    {
        double x,y;//实部和虚部 x+yi
        Complex(double _x = 0.0,double _y = 0.0)
        {
            x = _x;
            y = _y;
        }
        Complex operator -(const Complex &b)const
        {
            return Complex(x-b.x,y-b.y);
        }
        Complex operator +(const Complex &b)const
        {
            return Complex(x+b.x,y+b.y);
        }
        Complex operator *(const Complex &b)const
        {
            return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
        }
    };
    /*
    * 进行FFT和IFFT前的反转变换。
    * 位置i和 (i二进制反转后位置)互换
    * len必须去2的幂
    */
    void change(Complex y[],int len)
    {
        int i,j,k;
        for(i = 1, j = len/2;i <len-1;i++)
        {
            if(i < j)swap(y[i],y[j]);
            //交换互为小标反转的元素,i<j保证交换一次
            //i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
            k = len/2;
            while(j >= k)
            {
                j -= k;
                k /= 2;
            }
            if(j < k)j += k;
        }
    }
    /*
    * 做FFT
    * len必须为2^k形式,
    * on==1时是DFT,on==-1时是IDFT
    */
    void fft(Complex y[],int len,int on)
    {
        change(y,len);
        for(int h = 2; h <= len; h <<= 1)
        {
            Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
            for(int j = 0;j < len;j+=h)
            {
                Complex w(1,0);
                for(int k = j;k < j+h/2;k++)
                {
                    Complex u = y[k];
                    Complex t = w*y[k+h/2];
                    y[k] = u+t;
                    y[k+h/2] = u-t;
                    w = w*wn;
                }
            }
        }
        if(on == -1)
            for(int i = 0;i < len;i++)
                y[i].x /= len;
    }
    const int MAXN = 200010;
    Complex x1[MAXN],x2[MAXN];
    char str1[MAXN/2],str2[MAXN/2];
    int sum[MAXN];
    int main()
    {
        while(~scanf("%s%s",str1,str2))
        {
            int len1 = strlen(str1);
            int len2 = strlen(str2);
            int len = 1;
            while(len < len1*2 || len < len2*2)len<<=1;
            for(int i = 0;i < len1;i++)
                x1[i] = Complex(str1[len1-1-i]-'0',0);
            for(int i = len1;i < len;i++)
                x1[i] = Complex(0,0);
            for(int i = 0;i < len2;i++)
                x2[i] = Complex(str2[len2-1-i]-'0',0);
            for(int i = len2;i < len;i++)
                x2[i] = Complex(0,0);
            //求DFT
            fft(x1,len,1);
            fft(x2,len,1);
            for(int i = 0;i < len;i++)
                x1[i] = x1[i]*x2[i];
            fft(x1,len,-1);
            for(int i = 0;i < len;i++)
                sum[i] = (int)(x1[i].x+0.5);
            for(int i = 0;i < len;i++)
            {
                sum[i+1]+=sum[i]/10;
                sum[i]%=10;
            }
            len = len1+len2-1;
            while(sum[len] <= 0 && len > 0)len--;
            for(int i = len;i >= 0;i--)
                printf("%d",sum[i]);
            printf("
    ");
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Linux中find常见用法示例
    PHP写的异步高并发服务器,基于libevent
    Prototype原型模式
    抽象工厂模式
    工厂方法模式
    简单工厂模式
    记一次皮肤过敏
    Thread类线程结束会唤醒使用其对象做锁而睡眠的线程
    位运算符
    逻辑运算符
  • 原文地址:https://www.cnblogs.com/xiaohongmao/p/3669551.html
Copyright © 2011-2022 走看看