zoukankan      html  css  js  c++  java
  • 修剪版的卷积神经网络在性别分类中的应用

    前言:今天为大家带来一篇文章,发在CVPR 2017。是在LFW上做的实验,是一个二分类问题---性别识别。

    原文:Efficient Gender Classification Using a Deep LDA-Pruned Net

    摘要:本文也是说到了,卷积深度神经网络在目标检测,模式识别等各个方面取得了非常好的效果,是必须要有更强大的GPU支持。所以针对这个问题提出了一个修剪的卷积神经网络,用的是VGG基模型。在这里补充下VGG网络结构。

    VGG:

    VGG是一种非常有效的,经典的卷积神经网络,其在各大比赛中取得了非常好的成绩,常用的分为16层的和19层两种.

    VGG-16网络图:

    VGG-19网络图:

    当然详细的VGG模型。本文不做重点介绍。大家可以参考:VGG详细介绍

    本文的方法:

    作者在VGG上做了修剪。。。其主要是把VGG分为两部分,卷积的最后一层作为特征抽取的那一部分,后面的作为全连接层以及分类层作为一部分。如下图:

    上图中分成的两部分,作者把第二部分约去了。。。然后换成了SVM线性分类器。。。当然在中间也加了一个LDA模块,用于卷积特征的维数约减,当然作者也提到PCA降维没有考虑鉴别信息,所以对分类的效果不好。

    在卷积层之后的维数约减:

    考虑到PCA的缺点:本文采用了类内相关性(ICC)去更好的权衡有用的信息用于性别分类.

    其中是每一个性别的类内协方差矩阵。可以表示为:

    另外类间协方差矩阵:

    那么整个目标公式就是:

    W就是投影方向。。。其实就是一个LDA的过程。。。。。那么之后就直接代入SVM分类了。。。

    效果:

    所以整个模型架构为:

    而常规的方法:

    卧槽,这样分析和正常方法有什么两样?、?

    其实我现在懂了,科研其实就是很多小创新组合成了大创新。。。。。这样也就推动了科学的发展。好今天的文章也就讲到这里了,文章比较简单。。但是却挺有意思的。

  • 相关阅读:
    javascript 注意事项汇总
    Object.prototype.toString方法
    PHPStorm使用心得
    JavaScript基于原型链的继承
    PHP重定向的3种方式
    Android应用与开发环境
    PHP时间处理
    cocos2dxna 游戏中如何控制后退键实现目的性跳转
    wp7 独立存储空间在真机和虚拟机测试的时候数据不一样
    c#获取交叉数组的行、列数
  • 原文地址:https://www.cnblogs.com/xiaohuahua108/p/7608531.html
Copyright © 2011-2022 走看看