zoukankan      html  css  js  c++  java
  • hashtable

    hashtable

    #ifndef __SGI_STL_INTERNAL_HASHTABLE_H
    #define __SGI_STL_INTERNAL_HASHTABLE_H
    
    #include <stl_algobase.h>
    #include <stl_alloc.h>
    #include <stl_construct.h>
    #include <stl_tempbuf.h>
    #include <stl_algo.h>
    #include <stl_uninitialized.h>
    #include <stl_function.h>
    #include <stl_vector.h>
    #include <stl_hash_fun.h>
    
    __STL_BEGIN_NAMESPACE
    
    //@ hashtable中链表的节点结构
    //@ 类似于单链表的节点结构
    template <class _Val>
    struct _Hashtable_node
    {
      _Hashtable_node* _M_next;	//@ 指向下一节点
      _Val _M_val;	//@ 节点元素值
    };  
    
    //@ 这里使用前置声明, 避免在后面交叉引用会导致编译错误
    template <class _Val, class _Key, class _HashFcn,
              class _ExtractKey, class _EqualKey, class _Alloc = alloc>
    class hashtable;
    
    template <class _Val, class _Key, class _HashFcn,
              class _ExtractKey, class _EqualKey, class _Alloc>
    struct _Hashtable_iterator;
    
    template <class _Val, class _Key, class _HashFcn,
              class _ExtractKey, class _EqualKey, class _Alloc>
    struct _Hashtable_const_iterator;
    
    //@ hashtable迭代器定义
    //@ 注意:hash table迭代器没有提供后退操作operator--
    //@ 也没用提供逆向迭代器reverse iterator
    template <class _Val, class _Key, class _HashFcn,
              class _ExtractKey, class _EqualKey, class _Alloc>
    struct _Hashtable_iterator {
    //@ 内嵌类型别名
      typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
              _Hashtable;
      typedef _Hashtable_iterator<_Val, _Key, _HashFcn, 
                                  _ExtractKey, _EqualKey, _Alloc>
              iterator;
      typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, 
                                        _ExtractKey, _EqualKey, _Alloc>
              const_iterator;
      typedef _Hashtable_node<_Val> _Node;
    
      typedef forward_iterator_tag iterator_category;//采用正向迭代器
      typedef _Val value_type;
      typedef ptrdiff_t difference_type;
      typedef size_t size_type;
      typedef _Val& reference;
      typedef _Val* pointer;
    
      _Node* _M_cur;	//@ 当前迭代器所指位置
      _Hashtable* _M_ht;	//@ hashtable中的位置,控制访问桶子连续性
    
      _Hashtable_iterator(_Node* __n, _Hashtable* __tab) 
        : _M_cur(__n), _M_ht(__tab) {}
      _Hashtable_iterator() {}
      //@ 返回当前节点元素值的引用
      reference operator*() const { return _M_cur->_M_val; }
    #ifndef __SGI_STL_NO_ARROW_OPERATOR
      pointer operator->() const { return &(operator*()); }
    #endif /* __SGI_STL_NO_ARROW_OPERATOR */
      //@ 操作符重载定义在后面定义
      iterator& operator++();
      iterator operator++(int);
      //@ 比较两个迭代器是否指向同一个节点
      bool operator==(const iterator& __it) const
        { return _M_cur == __it._M_cur; }
      bool operator!=(const iterator& __it) const
        { return _M_cur != __it._M_cur; }
    };
    
    //@ 下面是const iterator的定义,基本和上面相同
    template <class _Val, class _Key, class _HashFcn,
              class _ExtractKey, class _EqualKey, class _Alloc>
    struct _Hashtable_const_iterator {
      typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
              _Hashtable;
      typedef _Hashtable_iterator<_Val,_Key,_HashFcn, 
                                  _ExtractKey,_EqualKey,_Alloc>
              iterator;
      typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, 
                                        _ExtractKey, _EqualKey, _Alloc>
              const_iterator;
      typedef _Hashtable_node<_Val> _Node;
    
      typedef forward_iterator_tag iterator_category;
      typedef _Val value_type;
      typedef ptrdiff_t difference_type;
      typedef size_t size_type;
      typedef const _Val& reference;
      typedef const _Val* pointer;
    
      const _Node* _M_cur;
      const _Hashtable* _M_ht;
    
      _Hashtable_const_iterator(const _Node* __n, const _Hashtable* __tab)
        : _M_cur(__n), _M_ht(__tab) {}
      _Hashtable_const_iterator() {}
      _Hashtable_const_iterator(const iterator& __it) 
        : _M_cur(__it._M_cur), _M_ht(__it._M_ht) {}
      reference operator*() const { return _M_cur->_M_val; }
    #ifndef __SGI_STL_NO_ARROW_OPERATOR
      pointer operator->() const { return &(operator*()); }
    #endif /* __SGI_STL_NO_ARROW_OPERATOR */
      const_iterator& operator++();
      const_iterator operator++(int);
      bool operator==(const const_iterator& __it) const 
        { return _M_cur == __it._M_cur; }
      bool operator!=(const const_iterator& __it) const 
        { return _M_cur != __it._M_cur; }
    };
    
    // Note: assumes long is at least 32 bits.
    //@  注意:假设long至少为32-bits, 可以根据自己需要修改
    //@ 定义28个素数用作hashtable的大小 
    enum { __stl_num_primes = 28 };
    
    static const unsigned long __stl_prime_list[__stl_num_primes] =
    {
      53ul,         97ul,         193ul,       389ul,       769ul,
      1543ul,       3079ul,       6151ul,      12289ul,     24593ul,
      49157ul,      98317ul,      196613ul,    393241ul,    786433ul,
      1572869ul,    3145739ul,    6291469ul,   12582917ul,  25165843ul,
      50331653ul,   100663319ul,  201326611ul, 402653189ul, 805306457ul, 
      1610612741ul, 3221225473ul, 4294967291ul
    };
    
    //@ 返回大于n的最小素数
    inline unsigned long __stl_next_prime(unsigned long __n)
    {
      const unsigned long* __first = __stl_prime_list;
      const unsigned long* __last = __stl_prime_list + (int)__stl_num_primes;
      const unsigned long* pos = lower_bound(__first, __last, __n);
      /*
      上面的lower_bound调用的是STL中的算法lower_bound();
      该算法的功能:
      即返回在[first,last)范围内第一个不小于val的位置
      注意:调用该算法之前,[first,last)范围里面的元素必须已排序
      该算法的原型如下:
      第一个版本:采用默认比较准则operator<
    	template <class ForwardIterator, class T>
    	ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last,
                                   const T& val);
      第二版本:采用用户指定的比较函数comp
    	template <class ForwardIterator, class T, class Compare>
    	ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last,
                                   const T& val, Compare comp);
    
    	其实该算法的实现机制使用二分查找法进行查找元素val:
    	template <class ForwardIterator, class T>
    	ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last, const T& val)
    	{
    	  ForwardIterator it;
    	  iterator_traits<ForwardIterator>::difference_type count, step;
    	  count = distance(first,last);
    	  while (count>0)
    	  {
    		it = first; step=count/2; advance (it,step);
    		if (*it<val) {                 // or: if (comp(*it,val)), for version (2)
    		  first=++it;
    		  count-=step+1;
    		}
    		else count=step;
    	  }
    	  return first;
    	}
    */
    
    // Forward declaration of operator==.
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    class hashtable;
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
                    const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2);
    
    // Hashtables handle allocators a bit differently than other containers
    //  do.  If we're using standard-conforming allocators, then a hashtable
    //  unconditionally has a member variable to hold its allocator, even if
    //  it so happens that all instances of the allocator type are identical.
    // This is because, for hashtables, this extra storage is negligible.  
    //  Additionally, a base class wouldn't serve any other purposes; it 
    //  wouldn't, for example, simplify the exception-handling code.
    
    //@ hash table的定义
    //@ 模板参数定义
    /* 
    Value: 节点的实值类型 
    Key:   节点的键值类型 
    HashFcn: hash function的类型 
    ExtractKey:从节点中取出键值的方法(函数或仿函数) 
    EqualKey:判断键值是否相同的方法(函数或仿函数) 
    Alloc:空间配置器
    */ 
    //@ hash table的线性表是用vector容器维护
    template <class _Val, class _Key, class _HashFcn,
              class _ExtractKey, class _EqualKey, class _Alloc>
    class hashtable {
    public:
      typedef _Key key_type;
      typedef _Val value_type;
      typedef _HashFcn hasher;
      typedef _EqualKey key_equal;
    
      typedef size_t            size_type;
      typedef ptrdiff_t         difference_type;
      typedef value_type*       pointer;
      typedef const value_type* const_pointer;
      typedef value_type&       reference;
      typedef const value_type& const_reference;
    
      hasher hash_funct() const { return _M_hash; }
      key_equal key_eq() const { return _M_equals; }
    
    private:
      typedef _Hashtable_node<_Val> _Node;
    
    #ifdef __STL_USE_STD_ALLOCATORS
    public:
      typedef typename _Alloc_traits<_Val,_Alloc>::allocator_type allocator_type;
      allocator_type get_allocator() const { return _M_node_allocator; }
    private:
      typename _Alloc_traits<_Node, _Alloc>::allocator_type _M_node_allocator;
      _Node* _M_get_node() { return _M_node_allocator.allocate(1); }
      void _M_put_node(_Node* __p) { _M_node_allocator.deallocate(__p, 1); }
    # define __HASH_ALLOC_INIT(__a) _M_node_allocator(__a), 
    #else /* __STL_USE_STD_ALLOCATORS */
    public:
      typedef _Alloc allocator_type;
      allocator_type get_allocator() const { return allocator_type(); }
    private:
      typedef simple_alloc<_Node, _Alloc> _M_node_allocator_type;
      _Node* _M_get_node() { return _M_node_allocator_type::allocate(1); }
      void _M_put_node(_Node* __p) { _M_node_allocator_type::deallocate(__p, 1); }
    # define __HASH_ALLOC_INIT(__a)
    #endif /* __STL_USE_STD_ALLOCATORS */
    
    //@ 以下是hash table的成员变量
    private:
      hasher                _M_hash;
      key_equal             _M_equals;
      _ExtractKey           _M_get_key;
      vector<_Node*,_Alloc> _M_buckets;	//@ 用vector维护buckets
      size_type             _M_num_elements;	//@ hashtable中list节点个数
    
    public:
      typedef _Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
              iterator;
      typedef _Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,
                                        _Alloc>
              const_iterator;
    
      friend struct
      _Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>;
      friend struct
      _Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>;
    
    public:
    	//@ 构造函数
      hashtable(size_type __n,
                const _HashFcn&    __hf,
                const _EqualKey&   __eql,
                const _ExtractKey& __ext,
                const allocator_type& __a = allocator_type())
        : __HASH_ALLOC_INIT(__a)
          _M_hash(__hf),
          _M_equals(__eql),
          _M_get_key(__ext),
          _M_buckets(__a),
          _M_num_elements(0)
      {
        _M_initialize_buckets(__n);//@ 预留空间,并将其初始化为空0
    	//@ 预留空间大小为大于n的最小素数
      }
    
      hashtable(size_type __n,
                const _HashFcn&    __hf,
                const _EqualKey&   __eql,
                const allocator_type& __a = allocator_type())
        : __HASH_ALLOC_INIT(__a)
          _M_hash(__hf),
          _M_equals(__eql),
          _M_get_key(_ExtractKey()),
          _M_buckets(__a),
          _M_num_elements(0)
      {
        _M_initialize_buckets(__n);
      }
    
      //@ 拷贝构造函数
      hashtable(const hashtable& __ht)
        : __HASH_ALLOC_INIT(__ht.get_allocator())
          _M_hash(__ht._M_hash),
          _M_equals(__ht._M_equals),
          _M_get_key(__ht._M_get_key),
          _M_buckets(__ht.get_allocator()),
          _M_num_elements(0)
      {
        _M_copy_from(__ht);//@ 复制hashtable内容
      }
    
    #undef __HASH_ALLOC_INIT
    
      //@ 可以通过operator=初始化hashtable对象
      hashtable& operator= (const hashtable& __ht)
      {
        if (&__ht != this) {
          clear();
          _M_hash = __ht._M_hash;
          _M_equals = __ht._M_equals;
          _M_get_key = __ht._M_get_key;
          _M_copy_from(__ht);
        }
        return *this;
      }
    
      ~hashtable() { clear(); }
    
      //@ 返回hashtable元素的个数
      size_type size() const { return _M_num_elements; }
      size_type max_size() const { return size_type(-1); }
      bool empty() const { return size() == 0; }
    
      //@ 交换两个hashtable的内容
      void swap(hashtable& __ht)
      {
        __STD::swap(_M_hash, __ht._M_hash);
        __STD::swap(_M_equals, __ht._M_equals);
        __STD::swap(_M_get_key, __ht._M_get_key);
        _M_buckets.swap(__ht._M_buckets);
        __STD::swap(_M_num_elements, __ht._M_num_elements);
      }
    
      iterator begin()
      { 
        for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
          if (_M_buckets[__n])//@ 若hashtable中的桶子_M_buckets有链表list
            return iterator(_M_buckets[__n], this);//@ 返回链表的第一个节点位置
        return end();//@ 若list链表为空,则返回尾端end(),其实这里尾端和起始端一样
      }
    
      iterator end() { return iterator(0, this); }//@ 返回桶子list链表的null指针,即尾端
    
      const_iterator begin() const
      {
        for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
          if (_M_buckets[__n])
            return const_iterator(_M_buckets[__n], this);
        return end();
      }
    
      const_iterator end() const { return const_iterator(0, this); }
    
    #ifdef __STL_MEMBER_TEMPLATES
      template <class _Vl, class _Ky, class _HF, class _Ex, class _Eq, class _Al>
      friend bool operator== (const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&,
                              const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&);
    #else /* __STL_MEMBER_TEMPLATES */
      friend bool __STD_QUALIFIER
      operator== __STL_NULL_TMPL_ARGS (const hashtable&, const hashtable&);
    #endif /* __STL_MEMBER_TEMPLATES */
    
    public:
    
      //@ 返回桶子个数,即线性表中节点数
      size_type bucket_count() const { return _M_buckets.size(); }
    
      //@ 线性表最多分配节点数
      size_type max_bucket_count() const
        { return __stl_prime_list[(int)__stl_num_primes - 1]; } 
    
      //@ 指定桶子键值key中list链表的元素个数
      size_type elems_in_bucket(size_type __bucket) const
      {
        size_type __result = 0;
        for (_Node* __cur = _M_buckets[__bucket]; __cur; __cur = __cur->_M_next)
          __result += 1;
        return __result;
      }
    
      //@ 插入元素节点,不允许存在重复元素
      pair<iterator, bool> insert_unique(const value_type& __obj)
      {
        //@ 判断容量是否够用, 否则就重新配置 
    	resize(_M_num_elements + 1);
    	//@ 插入元素,不允许存在重复元素
        return insert_unique_noresize(__obj);
      }
    
       //@ 插入元素节点,允许存在重复元素
      iterator insert_equal(const value_type& __obj)
      {//@ 判断容量是否够用, 否则就重新配置
        resize(_M_num_elements + 1);
    	//@ 插入元素,允许存在重复元素
        return insert_equal_noresize(__obj);
      }
      //@ 具体定义见hashtable类外后面的剖析
      pair<iterator, bool> insert_unique_noresize(const value_type& __obj);
      iterator insert_equal_noresize(const value_type& __obj);
     
    #ifdef __STL_MEMBER_TEMPLATES
      template <class _InputIterator>
      void insert_unique(_InputIterator __f, _InputIterator __l)
      {
        insert_unique(__f, __l, __ITERATOR_CATEGORY(__f));
      }
    
      template <class _InputIterator>
      void insert_equal(_InputIterator __f, _InputIterator __l)
      {
        insert_equal(__f, __l, __ITERATOR_CATEGORY(__f));
      }
    
      template <class _InputIterator>
      void insert_unique(_InputIterator __f, _InputIterator __l,
                         input_iterator_tag)
      {
        for ( ; __f != __l; ++__f)
          insert_unique(*__f);
      }
    
      template <class _InputIterator>
      void insert_equal(_InputIterator __f, _InputIterator __l,
                        input_iterator_tag)
      {
        for ( ; __f != __l; ++__f)
          insert_equal(*__f);
      }
    
      template <class _ForwardIterator>
      void insert_unique(_ForwardIterator __f, _ForwardIterator __l,
                         forward_iterator_tag)
      {
        size_type __n = 0;
        distance(__f, __l, __n);
        resize(_M_num_elements + __n);
        for ( ; __n > 0; --__n, ++__f)
          insert_unique_noresize(*__f);
      }
    
      template <class _ForwardIterator>
      void insert_equal(_ForwardIterator __f, _ForwardIterator __l,
                        forward_iterator_tag)
      {
        size_type __n = 0;
        distance(__f, __l, __n);
        resize(_M_num_elements + __n);
        for ( ; __n > 0; --__n, ++__f)
          insert_equal_noresize(*__f);
      }
    
    #else /* __STL_MEMBER_TEMPLATES */
      void insert_unique(const value_type* __f, const value_type* __l)
      {
        size_type __n = __l - __f;
        resize(_M_num_elements + __n);
        for ( ; __n > 0; --__n, ++__f)
          insert_unique_noresize(*__f);
      }
    
      void insert_equal(const value_type* __f, const value_type* __l)
      {
        size_type __n = __l - __f;
        resize(_M_num_elements + __n);
        for ( ; __n > 0; --__n, ++__f)
          insert_equal_noresize(*__f);
      }
    
      void insert_unique(const_iterator __f, const_iterator __l)
      {
        size_type __n = 0;
        distance(__f, __l, __n);
        resize(_M_num_elements + __n);
        for ( ; __n > 0; --__n, ++__f)
          insert_unique_noresize(*__f);
      }
    
      void insert_equal(const_iterator __f, const_iterator __l)
      {
        size_type __n = 0;
        distance(__f, __l, __n);
        resize(_M_num_elements + __n);
        for ( ; __n > 0; --__n, ++__f)
          insert_equal_noresize(*__f);
      }
    #endif /*__STL_MEMBER_TEMPLATES */
    
      reference find_or_insert(const value_type& __obj);
      //@ 查找指定键值的元素
      iterator find(const key_type& __key) 
      {
        size_type __n = _M_bkt_num_key(__key);//获取键值
        _Node* __first;
        for ( __first = _M_buckets[__n];
              __first && !_M_equals(_M_get_key(__first->_M_val), __key);
              __first = __first->_M_next)
          {}
        return iterator(__first, this);
      } 
    
      const_iterator find(const key_type& __key) const
      {
        size_type __n = _M_bkt_num_key(__key);
        const _Node* __first;
        for ( __first = _M_buckets[__n];
              __first && !_M_equals(_M_get_key(__first->_M_val), __key);
              __first = __first->_M_next)
          {}
        return const_iterator(__first, this);
      } 
    
      //@ 返回键值为key的元素的个数
      size_type count(const key_type& __key) const
      {
        const size_type __n = _M_bkt_num_key(__key);
        size_type __result = 0;
    
        for (const _Node* __cur = _M_buckets[__n]; __cur; __cur = __cur->_M_next)
          if (_M_equals(_M_get_key(__cur->_M_val), __key))
            ++__result;
        return __result;
      }
    
      pair<iterator, iterator> 
      equal_range(const key_type& __key);
    
      pair<const_iterator, const_iterator> 
      equal_range(const key_type& __key) const;
    
      //@ 擦除元素
      size_type erase(const key_type& __key);
      void erase(const iterator& __it);
      void erase(iterator __first, iterator __last);
    
      void erase(const const_iterator& __it);
      void erase(const_iterator __first, const_iterator __last);
    
      void resize(size_type __num_elements_hint);
      void clear();
    
    private:
    	//@ 返回大于n的最小素数
    	//@ 实际上调用__stl_next_prime(__n); 
      size_type _M_next_size(size_type __n) const
        { return __stl_next_prime(__n); }
    
      //@ 预留空间,并将其初始化为0
      void _M_initialize_buckets(size_type __n)
      {
        //@ 返回大于n的最小素数__n_buckets
    	 const size_type __n_buckets = _M_next_size(__n);
    	 //@这里调用vector的成员函数reserve
    	 //@ reserve该函数功能是改变可用空间的大小
    	 //Requests that the vector capacity be at least enough to contain __n_buckets elements.
        _M_buckets.reserve(__n_buckets);
    	//@ 调用vector的插入函数insert
    	//@ 在原始end后面连续插入__n_buckets个0
        _M_buckets.insert(_M_buckets.end(), __n_buckets, (_Node*) 0);
        _M_num_elements = 0;
      }
    
      //@获取键值key在桶子的位置
      size_type _M_bkt_num_key(const key_type& __key) const
      {
        return _M_bkt_num_key(__key, _M_buckets.size());
      }
    
      //@获取在桶子的序号,也就是键值
      //@ 输入参数是实值value
      size_type _M_bkt_num(const value_type& __obj) const
      {
        return _M_bkt_num_key(_M_get_key(__obj));
      }
    
      size_type _M_bkt_num_key(const key_type& __key, size_t __n) const
      {
        return _M_hash(__key) % __n;//@ 采用除法取余hash函数
      }
    
      size_type _M_bkt_num(const value_type& __obj, size_t __n) const
      {
        return _M_bkt_num_key(_M_get_key(__obj), __n);
      }
    
      //@ 分配节点空间,并构造对象
      _Node* _M_new_node(const value_type& __obj)
      {
        _Node* __n = _M_get_node();
        __n->_M_next = 0;
        __STL_TRY {
          construct(&__n->_M_val, __obj);
          return __n;
        }
        __STL_UNWIND(_M_put_node(__n));
      }
      
      //@ 析构对象,并释放空间
      void _M_delete_node(_Node* __n)
      {
        destroy(&__n->_M_val);
        _M_put_node(__n);
      }
    
      void _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last);
      void _M_erase_bucket(const size_type __n, _Node* __last);
    
      void _M_copy_from(const hashtable& __ht);
    
    };
    
    //@ 前缀operator++重载,前进一个list节点
    template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
              class _All>
    _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&
    _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++()
    {
      const _Node* __old = _M_cur;
      _M_cur = _M_cur->_M_next;//@ 若存在,则返回
      //@ 若当前节点为空,则需前进到下一个桶子的节点
      if (!_M_cur) {
    	  //@ 根据元素值,定位出下一个bucket的位置,其起始位置就是我们的目的地
        size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val);
        while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size())
          _M_cur = _M_ht->_M_buckets[__bucket];
      }
      return *this;
    }
    
    //@ 后缀operator++重载
    
    template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
              class _All>
    inline _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>
    _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int)
    {
      iterator __tmp = *this;
      ++*this;//调用operator++
      return __tmp;
    }
    
    template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
              class _All>
    _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&
    _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++()
    {
      const _Node* __old = _M_cur;
      _M_cur = _M_cur->_M_next;
      if (!_M_cur) {
        size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val);
        while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size())
          _M_cur = _M_ht->_M_buckets[__bucket];
      }
      return *this;
    }
    
    template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
              class _All>
    inline _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>
    _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int)
    {
      const_iterator __tmp = *this;
      ++*this;
      return __tmp;
    }
    
    #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
    
    template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
              class _All>
    inline forward_iterator_tag
    iterator_category(const _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&)
    {
      return forward_iterator_tag();
    }
    
    template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
              class _All>
    inline _Val* 
    value_type(const _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&)
    {
      return (_Val*) 0;
    }
    
    template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
              class _All>
    inline hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::difference_type*
    distance_type(const _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&)
    {
      return (hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::difference_type*) 0;
    }
    
    template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
              class _All>
    inline forward_iterator_tag
    iterator_category(const _Hashtable_const_iterator<_Val,_Key,_HF,
                                                      _ExK,_EqK,_All>&)
    {
      return forward_iterator_tag();
    }
    
    template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
              class _All>
    inline _Val* 
    value_type(const _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&)
    {
      return (_Val*) 0;
    }
    
    template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
              class _All>
    inline hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::difference_type*
    distance_type(const _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&)
    {
      return (hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::difference_type*) 0;
    }
    
    #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
                    const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2)
    {
      typedef typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::_Node _Node;
      if (__ht1._M_buckets.size() != __ht2._M_buckets.size())
        return false;
      for (int __n = 0; __n < __ht1._M_buckets.size(); ++__n) {
        _Node* __cur1 = __ht1._M_buckets[__n];
        _Node* __cur2 = __ht2._M_buckets[__n];
        for ( ; __cur1 && __cur2 && __cur1->_M_val == __cur2->_M_val;
              __cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next)
          {}
        if (__cur1 || __cur2)
          return false;
      }
      return true;
    }  
    
    #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    inline bool operator!=(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
                           const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2) {
      return !(__ht1 == __ht2);
    }
    
    template <class _Val, class _Key, class _HF, class _Extract, class _EqKey, 
              class _All>
    inline void swap(hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht1,
                     hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht2) {
      __ht1.swap(__ht2);
    }
    
    #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
    
    //插入元素,不需要重新调整内存空间,不允许存在重复元素
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator, bool> 
    hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
      ::insert_unique_noresize(const value_type& __obj)
    {
      //@ 获取待插入元素在hashtable中的桶子位置
      const size_type __n = _M_bkt_num(__obj);
      _Node* __first = _M_buckets[__n];
    
      //@ 判断hashtable中是否存在与之相等的键值元素
      //@ 若存在则不插入
      //@ 否则插入该元素
      for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) 
        if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
          return pair<iterator, bool>(iterator(__cur, this), false);
    
      //@ 把元素插入到第一个节点位置
      _Node* __tmp = _M_new_node(__obj);
      __tmp->_M_next = __first;
      _M_buckets[__n] = __tmp;
      ++_M_num_elements;
      return pair<iterator, bool>(iterator(__tmp, this), true);
    }
    
    //@ 插入元素,允许重复,不需要分配新的空间
    //@ 也就是说有足够的空间
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator 
    hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
      ::insert_equal_noresize(const value_type& __obj)
    {
    	//@ 获取待插入元素在hashtable中的桶子位置
      const size_type __n = _M_bkt_num(__obj);
      _Node* __first = _M_buckets[__n];
    
      for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) 
    	  //@ 若存在键值相同的元素,则插在相同元素下一个位置
        if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) {
          _Node* __tmp = _M_new_node(__obj);//@ 创建新节点
          __tmp->_M_next = __cur->_M_next;//@ 将新节点插在当前节点之后
          __cur->_M_next = __tmp;
          ++_M_num_elements;//@ 节点数加1
          return iterator(__tmp, this);//@ 返回指向新增节点迭代器
        }
    	//@ 若不存在相同键值的元素,则插在第一个位置
      _Node* __tmp = _M_new_node(__obj);//@ 创建新节点
      __tmp->_M_next = __first;//@ 插入在链表表头
      _M_buckets[__n] = __tmp;
      ++_M_num_elements;//@ 节点数加1
      return iterator(__tmp, this);//@ 返回指向新增节点的迭代器
    }
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::reference 
    hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::find_or_insert(const value_type& __obj)
    {
      resize(_M_num_elements + 1);
    
      size_type __n = _M_bkt_num(__obj);
      _Node* __first = _M_buckets[__n];
    
      for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
        if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
          return __cur->_M_val;
    
      _Node* __tmp = _M_new_node(__obj);
      __tmp->_M_next = __first;
      _M_buckets[__n] = __tmp;
      ++_M_num_elements;
      return __tmp->_M_val;
    }
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator,
         typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator> 
    hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::equal_range(const key_type& __key)
    {
      typedef pair<iterator, iterator> _Pii;
      const size_type __n = _M_bkt_num_key(__key);
    
      for (_Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next)
        if (_M_equals(_M_get_key(__first->_M_val), __key)) {
          for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next)
            if (!_M_equals(_M_get_key(__cur->_M_val), __key))
              return _Pii(iterator(__first, this), iterator(__cur, this));
          for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
            if (_M_buckets[__m])
              return _Pii(iterator(__first, this),
                         iterator(_M_buckets[__m], this));
          return _Pii(iterator(__first, this), end());
        }
      return _Pii(end(), end());
    }
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator, 
         typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator> 
    hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
      ::equal_range(const key_type& __key) const
    {
      typedef pair<const_iterator, const_iterator> _Pii;
      const size_type __n = _M_bkt_num_key(__key);
    
      for (const _Node* __first = _M_buckets[__n] ;
           __first; 
           __first = __first->_M_next) {
        if (_M_equals(_M_get_key(__first->_M_val), __key)) {
          for (const _Node* __cur = __first->_M_next;
               __cur;
               __cur = __cur->_M_next)
            if (!_M_equals(_M_get_key(__cur->_M_val), __key))
              return _Pii(const_iterator(__first, this),
                          const_iterator(__cur, this));
          for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
            if (_M_buckets[__m])
              return _Pii(const_iterator(__first, this),
                          const_iterator(_M_buckets[__m], this));
          return _Pii(const_iterator(__first, this), end());
        }
      }
      return _Pii(end(), end());
    }
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::size_type 
    hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const key_type& __key)
    {
      const size_type __n = _M_bkt_num_key(__key);
      _Node* __first = _M_buckets[__n];
      size_type __erased = 0;
    
      if (__first) {
        _Node* __cur = __first;
        _Node* __next = __cur->_M_next;
        while (__next) {
          if (_M_equals(_M_get_key(__next->_M_val), __key)) {
            __cur->_M_next = __next->_M_next;
            _M_delete_node(__next);
            __next = __cur->_M_next;
            ++__erased;
            --_M_num_elements;
          }
          else {
            __cur = __next;
            __next = __cur->_M_next;
          }
        }
        if (_M_equals(_M_get_key(__first->_M_val), __key)) {
          _M_buckets[__n] = __first->_M_next;
          _M_delete_node(__first);
          ++__erased;
          --_M_num_elements;
        }
      }
      return __erased;
    }
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const iterator& __it)
    {
      _Node* __p = __it._M_cur;
      if (__p) {
        const size_type __n = _M_bkt_num(__p->_M_val);
        _Node* __cur = _M_buckets[__n];
    
        if (__cur == __p) {
          _M_buckets[__n] = __cur->_M_next;
          _M_delete_node(__cur);
          --_M_num_elements;
        }
        else {
          _Node* __next = __cur->_M_next;
          while (__next) {
            if (__next == __p) {
              __cur->_M_next = __next->_M_next;
              _M_delete_node(__next);
              --_M_num_elements;
              break;
            }
            else {
              __cur = __next;
              __next = __cur->_M_next;
            }
          }
        }
      }
    }
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
      ::erase(iterator __first, iterator __last)
    {
      size_type __f_bucket = __first._M_cur ? 
        _M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size();
      size_type __l_bucket = __last._M_cur ? 
        _M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size();
    
      if (__first._M_cur == __last._M_cur)
        return;
      else if (__f_bucket == __l_bucket)
        _M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur);
      else {
        _M_erase_bucket(__f_bucket, __first._M_cur, 0);
        for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n)
          _M_erase_bucket(__n, 0);
        if (__l_bucket != _M_buckets.size())
          _M_erase_bucket(__l_bucket, __last._M_cur);
      }
    }
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    inline void
    hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const_iterator __first,
                                                 const_iterator __last)
    {
      erase(iterator(const_cast<_Node*>(__first._M_cur),
                     const_cast<hashtable*>(__first._M_ht)),
            iterator(const_cast<_Node*>(__last._M_cur),
                     const_cast<hashtable*>(__last._M_ht)));
    }
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    inline void
    hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const const_iterator& __it)
    {
      erase(iterator(const_cast<_Node*>(__it._M_cur),
                     const_cast<hashtable*>(__it._M_ht)));
    }
    
    //@ 调整hashtable的容量
    //@ 新的容量大小为__num_elements_hint
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
      ::resize(size_type __num_elements_hint)
    {
      //@ hashtable原始大小
      const size_type __old_n = _M_buckets.size();
      if (__num_elements_hint > __old_n) {//@ 若新的容量大小比原始的大
    	  //@ 查找不低于__num_elements_hint的最小素数
        const size_type __n = _M_next_size(__num_elements_hint);
        if (__n > __old_n) {
    		//@ 创建新的线性表,容量为__n,只是起到中介作用
          vector<_Node*, _All> __tmp(__n, (_Node*)(0),
                                     _M_buckets.get_allocator());
          __STL_TRY {//@ 以下是复制数据
            for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) {
              _Node* __first = _M_buckets[__bucket];
              while (__first) {
    			  //@ 获取实值在新桶子的键值位置
                size_type __new_bucket = _M_bkt_num(__first->_M_val, __n);
    			//@ 这个只是为了方便while循环里面__first的迭代
                _M_buckets[__bucket] = __first->_M_next;
    			//@将当前节点插入到新的桶子__new_bucket里面,成为list的第一个节点			
    			//@ __first->_M_next指向null指针,因为新桶子是空的
                __first->_M_next = __tmp[__new_bucket];
                __tmp[__new_bucket] = __first;//@ 新桶子对应键值指向第一个节点
                __first = _M_buckets[__bucket];//@ 更新当前指针          
              }
            }
            _M_buckets.swap(__tmp);//@ 交换内容
          }
    #         ifdef __STL_USE_EXCEPTIONS
          catch(...) {//释放临时hashtable的线性表tmp
            for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) {
              while (__tmp[__bucket]) {
                _Node* __next = __tmp[__bucket]->_M_next;
                _M_delete_node(__tmp[__bucket]);
                __tmp[__bucket] = __next;
              }
            }
            throw;
          }
    #         endif /* __STL_USE_EXCEPTIONS */
        }
      }
    }
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
      ::_M_erase_bucket(const size_type __n, _Node* __first, _Node* __last)
    {
      _Node* __cur = _M_buckets[__n];
      if (__cur == __first)
        _M_erase_bucket(__n, __last);
      else {
        _Node* __next;
        for (__next = __cur->_M_next; 
             __next != __first; 
             __cur = __next, __next = __cur->_M_next)
          ;
        while (__next != __last) {
          __cur->_M_next = __next->_M_next;
          _M_delete_node(__next);
          __next = __cur->_M_next;
          --_M_num_elements;
        }
      }
    }
    
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
      ::_M_erase_bucket(const size_type __n, _Node* __last)
    {
      _Node* __cur = _M_buckets[__n];
      while (__cur != __last) {
        _Node* __next = __cur->_M_next;
        _M_delete_node(__cur);
        __cur = __next;
        _M_buckets[__n] = __cur;
        --_M_num_elements;
      }
    }
    
    //@ 清空hashtable,但是没有释放bucket vector空间
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::clear()
    {
      for (size_type __i = 0; __i < _M_buckets.size(); ++__i) {//@ 遍历每个桶子
        _Node* __cur = _M_buckets[__i];//@ 当前节点为桶子的第一个节点
        while (__cur != 0) {//@ 遍历桶子维护的链表,并释放每个链表节点
          _Node* __next = __cur->_M_next;
          _M_delete_node(__cur);
          __cur = __next;
        }
        _M_buckets[__i] = 0;//@ 桶子链表为空
      }
      _M_num_elements = 0;//@ 链表节点数为0
    }
    
        
    //@ 拷贝hashtable对象
    //@ 实现机制:首先把原始对象清空,再把空间变成被复制对象__ht一样的大小
    //@ 最后把__ht的内容复制到目标对象
    template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
    void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
      ::_M_copy_from(const hashtable& __ht)
    {//@ _M_buckets是vector维护的,可以调用vector的成员函数
      _M_buckets.clear();//@ 清空线性表调用vector::clear()
      _M_buckets.reserve(__ht._M_buckets.size());//@ 把线性表内存空间变成与__ht一样大
      //@ 在_M_buckets vector尾端插入size个元素,初始值为空指针
      //@ 注意:此时_M_buckets vector为空,即尾端也是起始端
      _M_buckets.insert(_M_buckets.end(), __ht._M_buckets.size(), (_Node*) 0);
      __STL_TRY {//@ 开始复制操作
        for (size_type __i = 0; __i < __ht._M_buckets.size(); ++__i) {
    		//@ 复制vector的每一个元素(是指向hashtable节点指针)
          const _Node* __cur = __ht._M_buckets[__i];
          if (__cur) {
            _Node* __copy = _M_new_node(__cur->_M_val);
            _M_buckets[__i] = __copy;
    
            //@ 针对每一个hashtable节点对应的list,复制list的每一个节点
    		for (_Node* __next = __cur->_M_next; 
                 __next; 
                 __cur = __next, __next = __cur->_M_next) {
              __copy->_M_next = _M_new_node(__next->_M_val);
              __copy = __copy->_M_next;
            }
          }
        }
        _M_num_elements = __ht._M_num_elements;//@ 更新节点个数
      }
      __STL_UNWIND(clear());
    }
    
    __STL_END_NAMESPACE
    
    #endif /* __SGI_STL_INTERNAL_HASHTABLE_H */
    

    总结

    • set、multiset、map 和 multimap 的底层机制都是基于 RB-Tree 红黑树,虽然能够实现在插入、删除和搜素操作能够达到对数平均时间,可是要求输入数据有足够的随机性。
    • hash table 不需要要求输入数据具有随机性,在插入、删除和搜索操作都能达到常数平均时间。
    • 为了避免冲突(即不同元素映射到相同的键值位置),采用了拉链法来解决冲突问题。
    • SGI 中实现 hash table 的方式,在每个表格元素中维护一个链表, 然后在链表上执行元素的插入、搜寻、删除等操作,该表格中的每个元素被称为桶(bucket)。
    • hashtable 的迭代器没有后退操作,也没有所谓的反向迭代器。
  • 相关阅读:
    Linux上的.NET框架Mono 2.0发布
    WordPress数据库管理中五个实用的phpMyAdmin技巧
    美国十三个性价比较好的空间推荐 建站可优选
    众多站长将网站移民海外 该如何选择国外VPS
    Mono 开发 (使用.NET技术的你,绝对不能忽略Mono)
    数据库访问的性能问题与瓶颈问题【z】
    IE和FireFox中的event事件
    经典国外网站大放送
    AppScan 7.8.1 简体中文
    用lighttpd+mono在Linux上面跑ASP.NET程序
  • 原文地址:https://www.cnblogs.com/xiaojianliu/p/12610212.html
Copyright © 2011-2022 走看看