zoukankan      html  css  js  c++  java
  • R Multiple Plots

    R Multiple Plots

    In this article, you will learn to use par() function to put multiple graphs in a single plot by passing graphical parameters mfrow and mfcol.


    Sometimes we need to put two or more graphs in a single plot.


    R par() function

    We can put multiple graphs in a single plot by setting some graphical parameters with the help of par() function. R programming has a lot of graphical parameters which control the way our graphs are displayed.

    The par() function helps us in setting or inquiring about these parameters. For example, you can look at all the parameters and their value by calling the function without any argument.

    >par()
    $xlog
    [1] FALSE
    ...
    $yaxt
    [1] "s"
    $ylbias
    [1] 0.2
    

    You will see a long list of parameters and to know what each does you can check the help section ?par. Here we will focus on those which help us in creating subplots.

    Graphical parameter mfrow can be used to specify the number of subplot we need.

    It takes in a vector of form c(m, n) which divides the given plot into m*n array of subplots. For example, if we need to plot two graphs side by side, we would have m=1 and n=2. Following example illustrates this.

    >max.temp    # a vector used for plotting
    Sun Mon Tue Wen Thu Fri Sat 
    22  27  26  24  23  26  28
    par(mfrow=c(1,2))    # set the plotting area into a 1*2 array
    barplot(max.temp, main="Barplot")
    pie(max.temp, main="Piechart", radius=1)
    

    Two subplots side by side in R programming

    This same phenomenon can be achieved with the graphical parameter mfcol.

    The only difference between the two is that, mfrow fills in the subplot region row wise while mfcolfills it column wise.

    Temperature <- airquality$Temp
    Ozone <- airquality$Ozone
    par(mfrow=c(2,2))
    hist(Temperature)
    boxplot(Temperature, horizontal=TRUE)
    hist(Ozone)
    boxplot(Ozone, horizontal=TRUE)
    

    Subplot using mfrow in R programming

    Same plot with the change par(mfcol = c(2, 2)) would look as follows. Note that only the ordering of the subplot is different.

    Subplot using mfcol in R programming


    More Precise Control

    The graphical parameter fig lets us control the location of a figure precisely in a plot.

    We need to provide the coordinates in a normalized form as c(x1, x2, y1, y2). For example, the whole plot area would be c(0, 1, 0, 1) with (x1, y1) = (0, 0) being the lower-left corner and (x2, y2) = (1, 1) being the upper-right corner.

    Note: we have used parameters cex to decrease the size of labels and mai to define margins.

    # make labels and margins smaller
    par(cex=0.7, mai=c(0.1,0.1,0.2,0.1))
    Temperature <- airquality$Temp
    # define area for the histogram
    par(fig=c(0.1,0.7,0.3,0.9))
    hist(Temperature)
    # define area for the boxplot
    par(fig=c(0.8,1,0,1), new=TRUE)
    boxplot(Temperature)
    # define area for the stripchart
    par(fig=c(0.1,0.67,0.1,0.25), new=TRUE)
    stripchart(Temperature, method="jitter")
    

    The numbers assigned to fig were arrived at with a hit-and-trial method to achieve the best looking plot.

    Subplot using fig in R programming

  • 相关阅读:
    Redis_配置文件
    Redis_数据使用
    QQ登录测试用例
    JMeter性能测试入门--偏重工具的使用
    浅说《测试用例》
    axure界面功能
    性能测试相关术语
    测试用例设计和测试环境搭建
    测试需求分析
    软件测试的过程
  • 原文地址:https://www.cnblogs.com/xiaojikuaipao/p/11206746.html
Copyright © 2011-2022 走看看