zoukankan      html  css  js  c++  java
  • 15、手写数字识别-小数据集

    1.手写数字数据集

    • from sklearn.datasets import load_digits
    • digits = load_digits()

    2.图片数据预处理

    • x:归一化MinMaxScaler()
    • y:独热编码OneHotEncoder()或to_categorical
    • 训练集测试集划分
    • 张量结构

    3.设计卷积神经网络结构

    • 绘制模型结构图,并说明设计依据。

    4.模型训练

    • model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    • train_history = model.fit(x=X_train,y=y_train,validation_split=0.2, batch_size=300,epochs=10,verbose=2)

    5.模型评价

    • model.evaluate()
    • 交叉表与交叉矩阵
    • pandas.crosstab
    • seaborn.heatmap
      1 from sklearn.datasets import load_digits
      2 from sklearn.model_selection import train_test_split
      3 from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
      4 from tensorflow.keras.models import Sequential
      5 from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
      6 import matplotlib.pyplot as plt
      7 import numpy as np
      8 import pandas as pd
      9 import seaborn as sns
     10 
     11 
     12 def create_dataset():
     13     digits = load_digits()
     14     X_data = digits.data.astype(np.float32)
     15     Y_data = digits.target.astype(np.float32).reshape(-1, 1)  # 将Y_data变为一列
     16 
     17     return X_data, Y_data
     18 
     19 
     20 def process_data(X_data, Y_data):
     21     # 将属性缩放到一个指定的最大和最小值(通常是1-0之间)
     22     scaler = MinMaxScaler()
     23     X_data = scaler.fit_transform(X_data)
     24     print("MinMaxScaler_trans_X_data:")
     25     print(X_data)
     26     Y = OneHotEncoder().fit_transform(Y_data).todense()  # 进行oe-hot编码
     27     print("one-hot_Y:")
     28     print(Y)
     29     return X_data, Y
     30 
     31 
     32 def split_dataset(X_data, Y):
     33     # 转换为图片的格式(batch, height, width, channels)
     34     X = X_data.reshape(-1, 8, 8, 1)
     35     X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0, stratify=Y)
     36     print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
     37     return X_train, X_test, y_train, y_test
     38 
     39 
     40 def digits_model(X_train):
     41     """ 构建模型 """
     42     model = Sequential()
     43 
     44     ks = (3, 3)
     45     input_shape = X_train.shape[1:]
     46 
     47     # 一层卷积
     48     model.add(Conv2D(filters=64, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))
     49     # 池化层1
     50     model.add(MaxPool2D(pool_size=(2, 2)))
     51     model.add(Dropout(0.2))
     52     # 二层卷积
     53     model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
     54     # 池化层2
     55     model.add(MaxPool2D(pool_size=(2, 2)))
     56     model.add(Dropout(0.2))
     57 
     58     model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
     59     model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
     60     model.add(MaxPool2D(pool_size=(2, 2)))
     61     model.add(Dropout(0.2))
     62 
     63     model.add(Flatten())  # 平坦层
     64     model.add(Dense(128, activation='relu'))  # 全连接层
     65     model.add(Dropout(0.2))
     66     model.add(Dense(10, activation='softmax'))  # 激活函数
     67 
     68     print(model.summary())
     69 
     70     return model
     71 
     72 
     73 def train_model(model, X_train, y_train):
     74     """ 训练模型 """
     75     model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
     76     train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=256, epochs=10, verbose=2)
     77     return train_history
     78 
     79 
     80 def score_model(model, X_test, y_test):
     81     """ 评估模型 """
     82     return print(model.evaluate(X_test, y_test)[1])
     83 
     84 
     85 def test_model(model, X_test):
     86     """ 测试模型 """
     87     y_pre = model.predict_classes(X_test)
     88     return y_pre
     89 
     90 
     91 def crossrtab_matrix(y_test, y_pre):
     92     """
     93     交叉表、交叉矩阵
     94     查看预测数据与原数据对比
     95     """
     96     y_test = np.argmax(y_test, axis=1).reshape(-1)
     97     y_test = np.array(y_test)[0]
     98     # print(y_test)
     99     # print(type(y_test))
    100     # print('================')
    101     # print(type(y_pre))
    102     crosstab = pd.crosstab(y_test, y_pre, rownames=['labels'], colnames=['predict'])
    103     matrix = pd.DataFrame(crosstab)
    104     sns.heatmap(matrix, annot=True, cmap="RdPu", linewidths=0.2, linecolor='pink')
    105     plt.show()
    106 
    107 
    108 def show_train_history(train_history, train, validation):
    109     plt.plot(train_history.history[train])
    110     plt.plot(train_history.history[validation])
    111     plt.title("Train History")
    112     plt.ylabel("train")
    113     plt.xlabel("epoch")
    114     plt.legend(['train', 'validation'], loc='upper left')
    115     plt.show()
    116 
    117 
    118 if __name__ == '__main__':
    119     X_data, Y_data = create_dataset()
    120     X_data, Y = process_data(X_data, Y_data)
    121     X_train, X_test, y_train, y_test = split_dataset(X_data, Y)
    122     model = digits_model(X_train)
    123     train_history = train_model(model, X_train, y_train)
    124     score_model(model, X_test, y_test)
    125     y_pre = test_model(model, X_test)
    126     crossrtab_matrix(y_test, y_pre)
    127     show_train_history(train_history, 'accuracy', 'val_accuracy')  # 准确率
    128     show_train_history(train_history, 'loss', 'val_loss')  # 损失率

    运行结果如下:

     

    可视化展示数据训练参数最佳结果:

     

       由上图可知,当轮数epochs为10时,损失率以及准确率达到最佳。

    交叉矩阵结果:

  • 相关阅读:
    百度地图API示例之小实践 添加代理商标注
    MySQL分组操作
    MySQL连表操作
    MySQL多对多操作
    MySQL一对一操作
    MySQL唯一索引
    MySQL用户授权管理
    MySQL外键操作
    MySQL删操作
    MySQL增操作
  • 原文地址:https://www.cnblogs.com/xiaolan-Lin/p/13093648.html
Copyright © 2011-2022 走看看