Kafka目前主要作为一个分布式的发布订阅式的消息系统使用,下面简单介绍一下kafka的基本机制
1.3.1 消息传输流程
Producer即生产者,向Kafka集群发送消息,在发送消息之前,会对消息进行分类,即Topic,上图展示了两个producer发送了分类为topic1的消息,另外一个发送了topic2的消息。
Topic即主题,通过对消息指定主题可以将消息分类,消费者可以只关注自己需要的Topic中的消息
Consumer即消费者,消费者通过与kafka集群建立长连接的方式,不断地从集群中拉取消息,然后可以对这些消息进行处理。
从上图中就可以看出同一个Topic下的消费者和生产者的数量并不是对应的。
1.3.2 kafka服务器消息存储策略
谈到kafka的存储,就不得不提到分区,即partitions,创建一个topic时,同时可以指定分区数目,分区数越多,其吞吐量也越大,但是需要的资源也越多,同时也会导致更高的不可用性,kafka在接收到生产者发送的消息之后,会根据均衡策略将消息存储到不同的分区中。
在每个分区中,消息以顺序存储,最晚接收的的消息会最后被消费。
1.3.3 与生产者的交互
生产者在向kafka集群发送消息的时候,可以通过指定分区来发送到指定的分区中
也可以通过指定均衡策略来将消息发送到不同的分区中
如果不指定,就会采用默认的随机均衡策略,将消息随机的存储到不同的分区中
1.3.4 与消费者的交互
在消费者消费消息时,kafka使用offset来记录当前消费的位置
在kafka的设计中,可以有多个不同的group来同时消费同一个topic下的消息,如图,我们有两个不同的group同时消费,他们的的消费的记录位置offset各不项目,不互相干扰。
对于一个group而言,消费者的数量不应该多余分区的数量,因为在一个group中,每个分区至多只能绑定到一个消费者上,即一个消费者可以消费多个分区,一个分区只能给一个消费者消费
因此,若一个group中的消费者数量大于分区数量的话,多余的消费者将不会收到任何消息。
参考:https://www.cnblogs.com/hei12138/p/7805475.html