zoukankan      html  css  js  c++  java
  • Spark Gradient-boosted trees (GBTs)梯度提升树

    梯度提升树(GBT)是决策树的集合。 GBT迭代地训练决策树以便使损失函数最小化。 spark.ml实现支持GBT用于二进制分类和回归,可以使用连续和分类特征。

    GBDT的优点

      GBDT和随机森林一样,都具备决策树的一些优点: 
      (1)可以处理类别特征和连续特征; 
      (2)不需要对数据进行标准化预处理; 
      (3)可以分析特征之间的相互影响 
      值得注意的是,Spark中的GBDT目前还不能处理多分类问题,仅可以用于二分类和回归问题。(Spark随机森林可以处理多分类问题) 

    导入包

    import org.apache.spark.sql.SparkSession
    import org.apache.spark.sql.Dataset
    import org.apache.spark.sql.Row
    import org.apache.spark.sql.DataFrame
    import org.apache.spark.sql.Column
    import org.apache.spark.sql.DataFrameReader
    import org.apache.spark.rdd.RDD
    import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
    import org.apache.spark.sql.Encoder
    import org.apache.spark.sql.DataFrameStatFunctions
    import org.apache.spark.sql.functions._
     
    import org.apache.spark.ml.linalg.Vectors
    import org.apache.spark.ml.feature.{ IndexToString, StringIndexer, VectorIndexer }
    import org.apache.spark.ml.feature.VectorAssembler
    import org.apache.spark.ml.Pipeline
    import org.apache.spark.ml.regression.{ GBTRegressionModel, GBTRegressor }
    import org.apache.spark.ml.evaluation.RegressionEvaluator
    import org.apache.spark.ml.tuning.{ ParamGridBuilder, CrossValidator }
    

      导入数据源

    val spark = SparkSession.builder().appName("Spark Gradient-boosted tree regression").config("spark.some.config.option", "some-value").getOrCreate()
     
    // For implicit conversions like converting RDDs to DataFrames
    import spark.implicits._
     
    val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List( 
          (0, "male", 37, 10, "no", 3, 18, 7, 4), 
          (0, "female", 27, 4, "no", 4, 14, 6, 4), 
          (0, "female", 32, 15, "yes", 1, 12, 1, 4), 
          (0, "male", 57, 15, "yes", 5, 18, 6, 5), 
          (0, "male", 22, 0.75, "no", 2, 17, 6, 3), 
          (0, "female", 32, 1.5, "no", 2, 17, 5, 5), 
          (0, "female", 22, 0.75, "no", 2, 12, 1, 3), 
          (0, "male", 57, 15, "yes", 2, 14, 4, 4), 
          (0, "female", 32, 15, "yes", 4, 16, 1, 2), 
          (0, "male", 22, 1.5, "no", 4, 14, 4, 5), 
          (0, "male", 37, 15, "yes", 2, 20, 7, 2), 
          (0, "male", 27, 4, "yes", 4, 18, 6, 4), 
          (0, "male", 47, 15, "yes", 5, 17, 6, 4), 
          (0, "female", 22, 1.5, "no", 2, 17, 5, 4), 
          (0, "female", 27, 4, "no", 4, 14, 5, 4), 
          (0, "female", 37, 15, "yes", 1, 17, 5, 5), 
          (0, "female", 37, 15, "yes", 2, 18, 4, 3), 
          (0, "female", 22, 0.75, "no", 3, 16, 5, 4), 
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5), 
          (0, "female", 27, 10, "yes", 2, 14, 1, 5), 
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5), 
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5), 
          (0, "female", 27, 10, "yes", 4, 16, 5, 4), 
          (0, "female", 32, 10, "yes", 3, 14, 1, 5), 
          (0, "male", 37, 4, "yes", 2, 20, 6, 4), 
          (0, "female", 22, 1.5, "no", 2, 18, 5, 5), 
          (0, "female", 27, 7, "no", 4, 16, 1, 5), 
          (0, "male", 42, 15, "yes", 5, 20, 6, 4), 
          (0, "male", 27, 4, "yes", 3, 16, 5, 5), 
          (0, "female", 27, 4, "yes", 3, 17, 5, 4), 
          (0, "male", 42, 15, "yes", 4, 20, 6, 3), 
          (0, "female", 22, 1.5, "no", 3, 16, 5, 5), 
          (0, "male", 27, 0.417, "no", 4, 17, 6, 4), 
          (0, "female", 42, 15, "yes", 5, 14, 5, 4), 
          (0, "male", 32, 4, "yes", 1, 18, 6, 4), 
          (0, "female", 22, 1.5, "no", 4, 16, 5, 3), 
          (0, "female", 42, 15, "yes", 3, 12, 1, 4), 
          (0, "female", 22, 4, "no", 4, 17, 5, 5), 
          (0, "male", 22, 1.5, "yes", 1, 14, 3, 5), 
          (0, "female", 22, 0.75, "no", 3, 16, 1, 5), 
          (0, "male", 32, 10, "yes", 5, 20, 6, 5), 
          (0, "male", 52, 15, "yes", 5, 18, 6, 3), 
          (0, "female", 22, 0.417, "no", 5, 14, 1, 4), 
          (0, "female", 27, 4, "yes", 2, 18, 6, 1), 
          (0, "female", 32, 7, "yes", 5, 17, 5, 3), 
          (0, "male", 22, 4, "no", 3, 16, 5, 5), 
          (0, "female", 27, 7, "yes", 4, 18, 6, 5), 
          (0, "female", 42, 15, "yes", 2, 18, 5, 4), 
          (0, "male", 27, 1.5, "yes", 4, 16, 3, 5), 
          (0, "male", 42, 15, "yes", 2, 20, 6, 4), 
          (0, "female", 22, 0.75, "no", 5, 14, 3, 5), 
          (0, "male", 32, 7, "yes", 2, 20, 6, 4), 
          (0, "male", 27, 4, "yes", 5, 20, 6, 5), 
          (0, "male", 27, 10, "yes", 4, 20, 6, 4), 
          (0, "male", 22, 4, "no", 1, 18, 5, 5), 
          (0, "female", 37, 15, "yes", 4, 14, 3, 1), 
          (0, "male", 22, 1.5, "yes", 5, 16, 4, 4), 
          (0, "female", 37, 15, "yes", 4, 17, 1, 5), 
          (0, "female", 27, 0.75, "no", 4, 17, 5, 4), 
          (0, "male", 32, 10, "yes", 4, 20, 6, 4), 
          (0, "female", 47, 15, "yes", 5, 14, 7, 2), 
          (0, "male", 37, 10, "yes", 3, 20, 6, 4), 
          (0, "female", 22, 0.75, "no", 2, 16, 5, 5), 
          (0, "male", 27, 4, "no", 2, 18, 4, 5), 
          (0, "male", 32, 7, "no", 4, 20, 6, 4), 
          (0, "male", 42, 15, "yes", 2, 17, 3, 5), 
          (0, "male", 37, 10, "yes", 4, 20, 6, 4), 
          (0, "female", 47, 15, "yes", 3, 17, 6, 5), 
          (0, "female", 22, 1.5, "no", 5, 16, 5, 5), 
          (0, "female", 27, 1.5, "no", 2, 16, 6, 4), 
          (0, "female", 27, 4, "no", 3, 17, 5, 5), 
          (0, "female", 32, 10, "yes", 5, 14, 4, 5), 
          (0, "female", 22, 0.125, "no", 2, 12, 5, 5), 
          (0, "male", 47, 15, "yes", 4, 14, 4, 3), 
          (0, "male", 32, 15, "yes", 1, 14, 5, 5), 
          (0, "male", 27, 7, "yes", 4, 16, 5, 5), 
          (0, "female", 22, 1.5, "yes", 3, 16, 5, 5), 
          (0, "male", 27, 4, "yes", 3, 17, 6, 5), 
          (0, "female", 22, 1.5, "no", 3, 16, 5, 5), 
          (0, "male", 57, 15, "yes", 2, 14, 7, 2), 
          (0, "male", 17.5, 1.5, "yes", 3, 18, 6, 5), 
          (0, "male", 57, 15, "yes", 4, 20, 6, 5), 
          (0, "female", 22, 0.75, "no", 2, 16, 3, 4), 
          (0, "male", 42, 4, "no", 4, 17, 3, 3), 
          (0, "female", 22, 1.5, "yes", 4, 12, 1, 5), 
          (0, "female", 22, 0.417, "no", 1, 17, 6, 4), 
          (0, "female", 32, 15, "yes", 4, 17, 5, 5), 
          (0, "female", 27, 1.5, "no", 3, 18, 5, 2), 
          (0, "female", 22, 1.5, "yes", 3, 14, 1, 5), 
          (0, "female", 37, 15, "yes", 3, 14, 1, 4), 
          (0, "female", 32, 15, "yes", 4, 14, 3, 4), 
          (0, "male", 37, 10, "yes", 2, 14, 5, 3), 
          (0, "male", 37, 10, "yes", 4, 16, 5, 4), 
          (0, "male", 57, 15, "yes", 5, 20, 5, 3), 
          (0, "male", 27, 0.417, "no", 1, 16, 3, 4), 
          (0, "female", 42, 15, "yes", 5, 14, 1, 5), 
          (0, "male", 57, 15, "yes", 3, 16, 6, 1), 
          (0, "male", 37, 10, "yes", 1, 16, 6, 4), 
          (0, "male", 37, 15, "yes", 3, 17, 5, 5), 
          (0, "male", 37, 15, "yes", 4, 20, 6, 5), 
          (0, "female", 27, 10, "yes", 5, 14, 1, 5), 
          (0, "male", 37, 10, "yes", 2, 18, 6, 4), 
          (0, "female", 22, 0.125, "no", 4, 12, 4, 5), 
          (0, "male", 57, 15, "yes", 5, 20, 6, 5), 
          (0, "female", 37, 15, "yes", 4, 18, 6, 4), 
          (0, "male", 22, 4, "yes", 4, 14, 6, 4), 
          (0, "male", 27, 7, "yes", 4, 18, 5, 4), 
          (0, "male", 57, 15, "yes", 4, 20, 5, 4), 
          (0, "male", 32, 15, "yes", 3, 14, 6, 3), 
          (0, "female", 22, 1.5, "no", 2, 14, 5, 4), 
          (0, "female", 32, 7, "yes", 4, 17, 1, 5), 
          (0, "female", 37, 15, "yes", 4, 17, 6, 5), 
          (0, "female", 32, 1.5, "no", 5, 18, 5, 5), 
          (0, "male", 42, 10, "yes", 5, 20, 7, 4), 
          (0, "female", 27, 7, "no", 3, 16, 5, 4), 
          (0, "male", 37, 15, "no", 4, 20, 6, 5), 
          (0, "male", 37, 15, "yes", 4, 14, 3, 2), 
          (0, "male", 32, 10, "no", 5, 18, 6, 4), 
          (0, "female", 22, 0.75, "no", 4, 16, 1, 5), 
          (0, "female", 27, 7, "yes", 4, 12, 2, 4), 
          (0, "female", 27, 7, "yes", 2, 16, 2, 5), 
          (0, "female", 42, 15, "yes", 5, 18, 5, 4), 
          (0, "male", 42, 15, "yes", 4, 17, 5, 3), 
          (0, "female", 27, 7, "yes", 2, 16, 1, 2), 
          (0, "female", 22, 1.5, "no", 3, 16, 5, 5), 
          (0, "male", 37, 15, "yes", 5, 20, 6, 5), 
          (0, "female", 22, 0.125, "no", 2, 14, 4, 5), 
          (0, "male", 27, 1.5, "no", 4, 16, 5, 5), 
          (0, "male", 32, 1.5, "no", 2, 18, 6, 5), 
          (0, "male", 27, 1.5, "no", 2, 17, 6, 5), 
          (0, "female", 27, 10, "yes", 4, 16, 1, 3), 
          (0, "male", 42, 15, "yes", 4, 18, 6, 5), 
          (0, "female", 27, 1.5, "no", 2, 16, 6, 5), 
          (0, "male", 27, 4, "no", 2, 18, 6, 3), 
          (0, "female", 32, 10, "yes", 3, 14, 5, 3), 
          (0, "female", 32, 15, "yes", 3, 18, 5, 4), 
          (0, "female", 22, 0.75, "no", 2, 18, 6, 5), 
          (0, "female", 37, 15, "yes", 2, 16, 1, 4), 
          (0, "male", 27, 4, "yes", 4, 20, 5, 5), 
          (0, "male", 27, 4, "no", 1, 20, 5, 4), 
          (0, "female", 27, 10, "yes", 2, 12, 1, 4), 
          (0, "female", 32, 15, "yes", 5, 18, 6, 4), 
          (0, "male", 27, 7, "yes", 5, 12, 5, 3), 
          (0, "male", 52, 15, "yes", 2, 18, 5, 4), 
          (0, "male", 27, 4, "no", 3, 20, 6, 3), 
          (0, "male", 37, 4, "yes", 1, 18, 5, 4), 
          (0, "male", 27, 4, "yes", 4, 14, 5, 4), 
          (0, "female", 52, 15, "yes", 5, 12, 1, 3), 
          (0, "female", 57, 15, "yes", 4, 16, 6, 4), 
          (0, "male", 27, 7, "yes", 1, 16, 5, 4), 
          (0, "male", 37, 7, "yes", 4, 20, 6, 3), 
          (0, "male", 22, 0.75, "no", 2, 14, 4, 3), 
          (0, "male", 32, 4, "yes", 2, 18, 5, 3), 
          (0, "male", 37, 15, "yes", 4, 20, 6, 3), 
          (0, "male", 22, 0.75, "yes", 2, 14, 4, 3), 
          (0, "male", 42, 15, "yes", 4, 20, 6, 3), 
          (0, "female", 52, 15, "yes", 5, 17, 1, 1), 
          (0, "female", 37, 15, "yes", 4, 14, 1, 2), 
          (0, "male", 27, 7, "yes", 4, 14, 5, 3), 
          (0, "male", 32, 4, "yes", 2, 16, 5, 5), 
          (0, "female", 27, 4, "yes", 2, 18, 6, 5), 
          (0, "female", 27, 4, "yes", 2, 18, 5, 5), 
          (0, "male", 37, 15, "yes", 5, 18, 6, 5), 
          (0, "female", 47, 15, "yes", 5, 12, 5, 4), 
          (0, "female", 32, 10, "yes", 3, 17, 1, 4), 
          (0, "female", 27, 1.5, "yes", 4, 17, 1, 2), 
          (0, "female", 57, 15, "yes", 2, 18, 5, 2), 
          (0, "female", 22, 1.5, "no", 4, 14, 5, 4), 
          (0, "male", 42, 15, "yes", 3, 14, 3, 4), 
          (0, "male", 57, 15, "yes", 4, 9, 2, 2), 
          (0, "male", 57, 15, "yes", 4, 20, 6, 5), 
          (0, "female", 22, 0.125, "no", 4, 14, 4, 5), 
          (0, "female", 32, 10, "yes", 4, 14, 1, 5), 
          (0, "female", 42, 15, "yes", 3, 18, 5, 4), 
          (0, "female", 27, 1.5, "no", 2, 18, 6, 5), 
          (0, "male", 32, 0.125, "yes", 2, 18, 5, 2), 
          (0, "female", 27, 4, "no", 3, 16, 5, 4), 
          (0, "female", 27, 10, "yes", 2, 16, 1, 4), 
          (0, "female", 32, 7, "yes", 4, 16, 1, 3), 
          (0, "female", 37, 15, "yes", 4, 14, 5, 4), 
          (0, "female", 42, 15, "yes", 5, 17, 6, 2), 
          (0, "male", 32, 1.5, "yes", 4, 14, 6, 5), 
          (0, "female", 32, 4, "yes", 3, 17, 5, 3), 
          (0, "female", 37, 7, "no", 4, 18, 5, 5), 
          (0, "female", 22, 0.417, "yes", 3, 14, 3, 5), 
          (0, "female", 27, 7, "yes", 4, 14, 1, 5), 
          (0, "male", 27, 0.75, "no", 3, 16, 5, 5), 
          (0, "male", 27, 4, "yes", 2, 20, 5, 5), 
          (0, "male", 32, 10, "yes", 4, 16, 4, 5), 
          (0, "male", 32, 15, "yes", 1, 14, 5, 5), 
          (0, "male", 22, 0.75, "no", 3, 17, 4, 5), 
          (0, "female", 27, 7, "yes", 4, 17, 1, 4), 
          (0, "male", 27, 0.417, "yes", 4, 20, 5, 4), 
          (0, "male", 37, 15, "yes", 4, 20, 5, 4), 
          (0, "female", 37, 15, "yes", 2, 14, 1, 3), 
          (0, "male", 22, 4, "yes", 1, 18, 5, 4), 
          (0, "male", 37, 15, "yes", 4, 17, 5, 3), 
          (0, "female", 22, 1.5, "no", 2, 14, 4, 5), 
          (0, "male", 52, 15, "yes", 4, 14, 6, 2), 
          (0, "female", 22, 1.5, "no", 4, 17, 5, 5), 
          (0, "male", 32, 4, "yes", 5, 14, 3, 5), 
          (0, "male", 32, 4, "yes", 2, 14, 3, 5), 
          (0, "female", 22, 1.5, "no", 3, 16, 6, 5), 
          (0, "male", 27, 0.75, "no", 2, 18, 3, 3), 
          (0, "female", 22, 7, "yes", 2, 14, 5, 2), 
          (0, "female", 27, 0.75, "no", 2, 17, 5, 3), 
          (0, "female", 37, 15, "yes", 4, 12, 1, 2), 
          (0, "female", 22, 1.5, "no", 1, 14, 1, 5), 
          (0, "female", 37, 10, "no", 2, 12, 4, 4), 
          (0, "female", 37, 15, "yes", 4, 18, 5, 3), 
          (0, "female", 42, 15, "yes", 3, 12, 3, 3), 
          (0, "male", 22, 4, "no", 2, 18, 5, 5), 
          (0, "male", 52, 7, "yes", 2, 20, 6, 2), 
          (0, "male", 27, 0.75, "no", 2, 17, 5, 5), 
          (0, "female", 27, 4, "no", 2, 17, 4, 5), 
          (0, "male", 42, 1.5, "no", 5, 20, 6, 5), 
          (0, "male", 22, 1.5, "no", 4, 17, 6, 5), 
          (0, "male", 22, 4, "no", 4, 17, 5, 3), 
          (0, "female", 22, 4, "yes", 1, 14, 5, 4), 
          (0, "male", 37, 15, "yes", 5, 20, 4, 5), 
          (0, "female", 37, 10, "yes", 3, 16, 6, 3), 
          (0, "male", 42, 15, "yes", 4, 17, 6, 5), 
          (0, "female", 47, 15, "yes", 4, 17, 5, 5), 
          (0, "male", 22, 1.5, "no", 4, 16, 5, 4), 
          (0, "female", 32, 10, "yes", 3, 12, 1, 4), 
          (0, "female", 22, 7, "yes", 1, 14, 3, 5), 
          (0, "female", 32, 10, "yes", 4, 17, 5, 4), 
          (0, "male", 27, 1.5, "yes", 2, 16, 2, 4), 
          (0, "male", 37, 15, "yes", 4, 14, 5, 5), 
          (0, "male", 42, 4, "yes", 3, 14, 4, 5), 
          (0, "female", 37, 15, "yes", 5, 14, 5, 4), 
          (0, "female", 32, 7, "yes", 4, 17, 5, 5), 
          (0, "female", 42, 15, "yes", 4, 18, 6, 5), 
          (0, "male", 27, 4, "no", 4, 18, 6, 4), 
          (0, "male", 22, 0.75, "no", 4, 18, 6, 5), 
          (0, "male", 27, 4, "yes", 4, 14, 5, 3), 
          (0, "female", 22, 0.75, "no", 5, 18, 1, 5), 
          (0, "female", 52, 15, "yes", 5, 9, 5, 5), 
          (0, "male", 32, 10, "yes", 3, 14, 5, 5), 
          (0, "female", 37, 15, "yes", 4, 16, 4, 4), 
          (0, "male", 32, 7, "yes", 2, 20, 5, 4), 
          (0, "female", 42, 15, "yes", 3, 18, 1, 4), 
          (0, "male", 32, 15, "yes", 1, 16, 5, 5), 
          (0, "male", 27, 4, "yes", 3, 18, 5, 5), 
          (0, "female", 32, 15, "yes", 4, 12, 3, 4), 
          (0, "male", 22, 0.75, "yes", 3, 14, 2, 4), 
          (0, "female", 22, 1.5, "no", 3, 16, 5, 3), 
          (0, "female", 42, 15, "yes", 4, 14, 3, 5), 
          (0, "female", 52, 15, "yes", 3, 16, 5, 4), 
          (0, "male", 37, 15, "yes", 5, 20, 6, 4), 
          (0, "female", 47, 15, "yes", 4, 12, 2, 3), 
          (0, "male", 57, 15, "yes", 2, 20, 6, 4), 
          (0, "male", 32, 7, "yes", 4, 17, 5, 5), 
          (0, "female", 27, 7, "yes", 4, 17, 1, 4), 
          (0, "male", 22, 1.5, "no", 1, 18, 6, 5), 
          (0, "female", 22, 4, "yes", 3, 9, 1, 4), 
          (0, "female", 22, 1.5, "no", 2, 14, 1, 5), 
          (0, "male", 42, 15, "yes", 2, 20, 6, 4), 
          (0, "male", 57, 15, "yes", 4, 9, 2, 4), 
          (0, "female", 27, 7, "yes", 2, 18, 1, 5), 
          (0, "female", 22, 4, "yes", 3, 14, 1, 5), 
          (0, "male", 37, 15, "yes", 4, 14, 5, 3), 
          (0, "male", 32, 7, "yes", 1, 18, 6, 4), 
          (0, "female", 22, 1.5, "no", 2, 14, 5, 5), 
          (0, "female", 22, 1.5, "yes", 3, 12, 1, 3), 
          (0, "male", 52, 15, "yes", 2, 14, 5, 5), 
          (0, "female", 37, 15, "yes", 2, 14, 1, 1), 
          (0, "female", 32, 10, "yes", 2, 14, 5, 5), 
          (0, "male", 42, 15, "yes", 4, 20, 4, 5), 
          (0, "female", 27, 4, "yes", 3, 18, 4, 5), 
          (0, "male", 37, 15, "yes", 4, 20, 6, 5), 
          (0, "male", 27, 1.5, "no", 3, 18, 5, 5), 
          (0, "female", 22, 0.125, "no", 2, 16, 6, 3), 
          (0, "male", 32, 10, "yes", 2, 20, 6, 3), 
          (0, "female", 27, 4, "no", 4, 18, 5, 4), 
          (0, "female", 27, 7, "yes", 2, 12, 5, 1), 
          (0, "male", 32, 4, "yes", 5, 18, 6, 3), 
          (0, "female", 37, 15, "yes", 2, 17, 5, 5), 
          (0, "male", 47, 15, "no", 4, 20, 6, 4), 
          (0, "male", 27, 1.5, "no", 1, 18, 5, 5), 
          (0, "male", 37, 15, "yes", 4, 20, 6, 4), 
          (0, "female", 32, 15, "yes", 4, 18, 1, 4), 
          (0, "female", 32, 7, "yes", 4, 17, 5, 4), 
          (0, "female", 42, 15, "yes", 3, 14, 1, 3), 
          (0, "female", 27, 7, "yes", 3, 16, 1, 4), 
          (0, "male", 27, 1.5, "no", 3, 16, 4, 2), 
          (0, "male", 22, 1.5, "no", 3, 16, 3, 5), 
          (0, "male", 27, 4, "yes", 3, 16, 4, 2), 
          (0, "female", 27, 7, "yes", 3, 12, 1, 2), 
          (0, "female", 37, 15, "yes", 2, 18, 5, 4), 
          (0, "female", 37, 7, "yes", 3, 14, 4, 4), 
          (0, "male", 22, 1.5, "no", 2, 16, 5, 5), 
          (0, "male", 37, 15, "yes", 5, 20, 5, 4), 
          (0, "female", 22, 1.5, "no", 4, 16, 5, 3), 
          (0, "female", 32, 10, "yes", 4, 16, 1, 5), 
          (0, "male", 27, 4, "no", 2, 17, 5, 3), 
          (0, "female", 22, 0.417, "no", 4, 14, 5, 5), 
          (0, "female", 27, 4, "no", 2, 18, 5, 5), 
          (0, "male", 37, 15, "yes", 4, 18, 5, 3), 
          (0, "male", 37, 10, "yes", 5, 20, 7, 4), 
          (0, "female", 27, 7, "yes", 2, 14, 4, 2), 
          (0, "male", 32, 4, "yes", 2, 16, 5, 5), 
          (0, "male", 32, 4, "yes", 2, 16, 6, 4), 
          (0, "male", 22, 1.5, "no", 3, 18, 4, 5), 
          (0, "female", 22, 4, "yes", 4, 14, 3, 4), 
          (0, "female", 17.5, 0.75, "no", 2, 18, 5, 4), 
          (0, "male", 32, 10, "yes", 4, 20, 4, 5), 
          (0, "female", 32, 0.75, "no", 5, 14, 3, 3), 
          (0, "male", 37, 15, "yes", 4, 17, 5, 3), 
          (0, "male", 32, 4, "no", 3, 14, 4, 5), 
          (0, "female", 27, 1.5, "no", 2, 17, 3, 2), 
          (0, "female", 22, 7, "yes", 4, 14, 1, 5), 
          (0, "male", 47, 15, "yes", 5, 14, 6, 5), 
          (0, "male", 27, 4, "yes", 1, 16, 4, 4), 
          (0, "female", 37, 15, "yes", 5, 14, 1, 3), 
          (0, "male", 42, 4, "yes", 4, 18, 5, 5), 
          (0, "female", 32, 4, "yes", 2, 14, 1, 5), 
          (0, "male", 52, 15, "yes", 2, 14, 7, 4), 
          (0, "female", 22, 1.5, "no", 2, 16, 1, 4), 
          (0, "male", 52, 15, "yes", 4, 12, 2, 4), 
          (0, "female", 22, 0.417, "no", 3, 17, 1, 5), 
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5), 
          (0, "male", 27, 4, "yes", 4, 20, 6, 4), 
          (0, "female", 32, 15, "yes", 4, 14, 1, 5), 
          (0, "female", 27, 1.5, "no", 2, 16, 3, 5), 
          (0, "male", 32, 4, "no", 1, 20, 6, 5), 
          (0, "male", 37, 15, "yes", 3, 20, 6, 4), 
          (0, "female", 32, 10, "no", 2, 16, 6, 5), 
          (0, "female", 32, 10, "yes", 5, 14, 5, 5), 
          (0, "male", 37, 1.5, "yes", 4, 18, 5, 3), 
          (0, "male", 32, 1.5, "no", 2, 18, 4, 4), 
          (0, "female", 32, 10, "yes", 4, 14, 1, 4), 
          (0, "female", 47, 15, "yes", 4, 18, 5, 4), 
          (0, "female", 27, 10, "yes", 5, 12, 1, 5), 
          (0, "male", 27, 4, "yes", 3, 16, 4, 5), 
          (0, "female", 37, 15, "yes", 4, 12, 4, 2), 
          (0, "female", 27, 0.75, "no", 4, 16, 5, 5), 
          (0, "female", 37, 15, "yes", 4, 16, 1, 5), 
          (0, "female", 32, 15, "yes", 3, 16, 1, 5), 
          (0, "female", 27, 10, "yes", 2, 16, 1, 5), 
          (0, "male", 27, 7, "no", 2, 20, 6, 5), 
          (0, "female", 37, 15, "yes", 2, 14, 1, 3), 
          (0, "male", 27, 1.5, "yes", 2, 17, 4, 4), 
          (0, "female", 22, 0.75, "yes", 2, 14, 1, 5), 
          (0, "male", 22, 4, "yes", 4, 14, 2, 4), 
          (0, "male", 42, 0.125, "no", 4, 17, 6, 4), 
          (0, "male", 27, 1.5, "yes", 4, 18, 6, 5), 
          (0, "male", 27, 7, "yes", 3, 16, 6, 3), 
          (0, "female", 52, 15, "yes", 4, 14, 1, 3), 
          (0, "male", 27, 1.5, "no", 5, 20, 5, 2), 
          (0, "female", 27, 1.5, "no", 2, 16, 5, 5), 
          (0, "female", 27, 1.5, "no", 3, 17, 5, 5), 
          (0, "male", 22, 0.125, "no", 5, 16, 4, 4), 
          (0, "female", 27, 4, "yes", 4, 16, 1, 5), 
          (0, "female", 27, 4, "yes", 4, 12, 1, 5), 
          (0, "female", 47, 15, "yes", 2, 14, 5, 5), 
          (0, "female", 32, 15, "yes", 3, 14, 5, 3), 
          (0, "male", 42, 7, "yes", 2, 16, 5, 5), 
          (0, "male", 22, 0.75, "no", 4, 16, 6, 4), 
          (0, "male", 27, 0.125, "no", 3, 20, 6, 5), 
          (0, "male", 32, 10, "yes", 3, 20, 6, 5), 
          (0, "female", 22, 0.417, "no", 5, 14, 4, 5), 
          (0, "female", 47, 15, "yes", 5, 14, 1, 4), 
          (0, "female", 32, 10, "yes", 3, 14, 1, 5), 
          (0, "male", 57, 15, "yes", 4, 17, 5, 5), 
          (0, "male", 27, 4, "yes", 3, 20, 6, 5), 
          (0, "female", 32, 7, "yes", 4, 17, 1, 5), 
          (0, "female", 37, 10, "yes", 4, 16, 1, 5), 
          (0, "female", 32, 10, "yes", 1, 18, 1, 4), 
          (0, "female", 22, 4, "no", 3, 14, 1, 4), 
          (0, "female", 27, 7, "yes", 4, 14, 3, 2), 
          (0, "male", 57, 15, "yes", 5, 18, 5, 2), 
          (0, "male", 32, 7, "yes", 2, 18, 5, 5), 
          (0, "female", 27, 1.5, "no", 4, 17, 1, 3), 
          (0, "male", 22, 1.5, "no", 4, 14, 5, 5), 
          (0, "female", 22, 1.5, "yes", 4, 14, 5, 4), 
          (0, "female", 32, 7, "yes", 3, 16, 1, 5), 
          (0, "female", 47, 15, "yes", 3, 16, 5, 4), 
          (0, "female", 22, 0.75, "no", 3, 16, 1, 5), 
          (0, "female", 22, 1.5, "yes", 2, 14, 5, 5), 
          (0, "female", 27, 4, "yes", 1, 16, 5, 5), 
          (0, "male", 52, 15, "yes", 4, 16, 5, 5), 
          (0, "male", 32, 10, "yes", 4, 20, 6, 5), 
          (0, "male", 47, 15, "yes", 4, 16, 6, 4), 
          (0, "female", 27, 7, "yes", 2, 14, 1, 2), 
          (0, "female", 22, 1.5, "no", 4, 14, 4, 5), 
          (0, "female", 32, 10, "yes", 2, 16, 5, 4), 
          (0, "female", 22, 0.75, "no", 2, 16, 5, 4), 
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5), 
          (0, "female", 42, 15, "yes", 3, 18, 6, 4), 
          (0, "female", 27, 7, "yes", 5, 14, 4, 5), 
          (0, "male", 42, 15, "yes", 4, 16, 4, 4), 
          (0, "female", 57, 15, "yes", 3, 18, 5, 2), 
          (0, "male", 42, 15, "yes", 3, 18, 6, 2), 
          (0, "female", 32, 7, "yes", 2, 14, 1, 2), 
          (0, "male", 22, 4, "no", 5, 12, 4, 5), 
          (0, "female", 22, 1.5, "no", 1, 16, 6, 5), 
          (0, "female", 22, 0.75, "no", 1, 14, 4, 5), 
          (0, "female", 32, 15, "yes", 4, 12, 1, 5), 
          (0, "male", 22, 1.5, "no", 2, 18, 5, 3), 
          (0, "male", 27, 4, "yes", 5, 17, 2, 5), 
          (0, "female", 27, 4, "yes", 4, 12, 1, 5), 
          (0, "male", 42, 15, "yes", 5, 18, 5, 4), 
          (0, "male", 32, 1.5, "no", 2, 20, 7, 3), 
          (0, "male", 57, 15, "no", 4, 9, 3, 1), 
          (0, "male", 37, 7, "no", 4, 18, 5, 5), 
          (0, "male", 52, 15, "yes", 2, 17, 5, 4), 
          (0, "male", 47, 15, "yes", 4, 17, 6, 5), 
          (0, "female", 27, 7, "no", 2, 17, 5, 4), 
          (0, "female", 27, 7, "yes", 4, 14, 5, 5), 
          (0, "female", 22, 4, "no", 2, 14, 3, 3), 
          (0, "male", 37, 7, "yes", 2, 20, 6, 5), 
          (0, "male", 27, 7, "no", 4, 12, 4, 3), 
          (0, "male", 42, 10, "yes", 4, 18, 6, 4), 
          (0, "female", 22, 1.5, "no", 3, 14, 1, 5), 
          (0, "female", 22, 4, "yes", 2, 14, 1, 3), 
          (0, "female", 57, 15, "no", 4, 20, 6, 5), 
          (0, "male", 37, 15, "yes", 4, 14, 4, 3), 
          (0, "female", 27, 7, "yes", 3, 18, 5, 5), 
          (0, "female", 17.5, 10, "no", 4, 14, 4, 5), 
          (0, "male", 22, 4, "yes", 4, 16, 5, 5), 
          (0, "female", 27, 4, "yes", 2, 16, 1, 4), 
          (0, "female", 37, 15, "yes", 2, 14, 5, 1), 
          (0, "female", 22, 1.5, "no", 5, 14, 1, 4), 
          (0, "male", 27, 7, "yes", 2, 20, 5, 4), 
          (0, "male", 27, 4, "yes", 4, 14, 5, 5), 
          (0, "male", 22, 0.125, "no", 1, 16, 3, 5), 
          (0, "female", 27, 7, "yes", 4, 14, 1, 4), 
          (0, "female", 32, 15, "yes", 5, 16, 5, 3), 
          (0, "male", 32, 10, "yes", 4, 18, 5, 4), 
          (0, "female", 32, 15, "yes", 2, 14, 3, 4), 
          (0, "female", 22, 1.5, "no", 3, 17, 5, 5), 
          (0, "male", 27, 4, "yes", 4, 17, 4, 4), 
          (0, "female", 52, 15, "yes", 5, 14, 1, 5), 
          (0, "female", 27, 7, "yes", 2, 12, 1, 2), 
          (0, "female", 27, 7, "yes", 3, 12, 1, 4), 
          (0, "female", 42, 15, "yes", 2, 14, 1, 4), 
          (0, "female", 42, 15, "yes", 4, 14, 5, 4), 
          (0, "male", 27, 7, "yes", 4, 14, 3, 3), 
          (0, "male", 27, 7, "yes", 2, 20, 6, 2), 
          (0, "female", 42, 15, "yes", 3, 12, 3, 3), 
          (0, "male", 27, 4, "yes", 3, 16, 3, 5), 
          (0, "female", 27, 7, "yes", 3, 14, 1, 4), 
          (0, "female", 22, 1.5, "no", 2, 14, 4, 5), 
          (0, "female", 27, 4, "yes", 4, 14, 1, 4), 
          (0, "female", 22, 4, "no", 4, 14, 5, 5), 
          (0, "female", 22, 1.5, "no", 2, 16, 4, 5), 
          (0, "male", 47, 15, "no", 4, 14, 5, 4), 
          (0, "male", 37, 10, "yes", 2, 18, 6, 2), 
          (0, "male", 37, 15, "yes", 3, 17, 5, 4), 
          (0, "female", 27, 4, "yes", 2, 16, 1, 4), 
          (3, "male", 27, 1.5, "no", 3, 18, 4, 4), 
          (3, "female", 27, 4, "yes", 3, 17, 1, 5), 
          (7, "male", 37, 15, "yes", 5, 18, 6, 2), 
          (12, "female", 32, 10, "yes", 3, 17, 5, 2), 
          (1, "male", 22, 0.125, "no", 4, 16, 5, 5), 
          (1, "female", 22, 1.5, "yes", 2, 14, 1, 5), 
          (12, "male", 37, 15, "yes", 4, 14, 5, 2), 
          (7, "female", 22, 1.5, "no", 2, 14, 3, 4), 
          (2, "male", 37, 15, "yes", 2, 18, 6, 4), 
          (3, "female", 32, 15, "yes", 4, 12, 3, 2), 
          (1, "female", 37, 15, "yes", 4, 14, 4, 2), 
          (7, "female", 42, 15, "yes", 3, 17, 1, 4), 
          (12, "female", 42, 15, "yes", 5, 9, 4, 1), 
          (12, "male", 37, 10, "yes", 2, 20, 6, 2), 
          (12, "female", 32, 15, "yes", 3, 14, 1, 2), 
          (3, "male", 27, 4, "no", 1, 18, 6, 5), 
          (7, "male", 37, 10, "yes", 2, 18, 7, 3), 
          (7, "female", 27, 4, "no", 3, 17, 5, 5), 
          (1, "male", 42, 15, "yes", 4, 16, 5, 5), 
          (1, "female", 47, 15, "yes", 5, 14, 4, 5), 
          (7, "female", 27, 4, "yes", 3, 18, 5, 4), 
          (1, "female", 27, 7, "yes", 5, 14, 1, 4), 
          (12, "male", 27, 1.5, "yes", 3, 17, 5, 4), 
          (12, "female", 27, 7, "yes", 4, 14, 6, 2), 
          (3, "female", 42, 15, "yes", 4, 16, 5, 4), 
          (7, "female", 27, 10, "yes", 4, 12, 7, 3), 
          (1, "male", 27, 1.5, "no", 2, 18, 5, 2), 
          (1, "male", 32, 4, "no", 4, 20, 6, 4), 
          (1, "female", 27, 7, "yes", 3, 14, 1, 3), 
          (3, "female", 32, 10, "yes", 4, 14, 1, 4), 
          (3, "male", 27, 4, "yes", 2, 18, 7, 2), 
          (1, "female", 17.5, 0.75, "no", 5, 14, 4, 5), 
          (1, "female", 32, 10, "yes", 4, 18, 1, 5), 
          (7, "female", 32, 7, "yes", 2, 17, 6, 4), 
          (7, "male", 37, 15, "yes", 2, 20, 6, 4), 
          (7, "female", 37, 10, "no", 1, 20, 5, 3), 
          (12, "female", 32, 10, "yes", 2, 16, 5, 5), 
          (7, "male", 52, 15, "yes", 2, 20, 6, 4), 
          (7, "female", 42, 15, "yes", 1, 12, 1, 3), 
          (1, "male", 52, 15, "yes", 2, 20, 6, 3), 
          (2, "male", 37, 15, "yes", 3, 18, 6, 5), 
          (12, "female", 22, 4, "no", 3, 12, 3, 4), 
          (12, "male", 27, 7, "yes", 1, 18, 6, 2), 
          (1, "male", 27, 4, "yes", 3, 18, 5, 5), 
          (12, "male", 47, 15, "yes", 4, 17, 6, 5), 
          (12, "female", 42, 15, "yes", 4, 12, 1, 1), 
          (7, "male", 27, 4, "no", 3, 14, 3, 4), 
          (7, "female", 32, 7, "yes", 4, 18, 4, 5), 
          (1, "male", 32, 0.417, "yes", 3, 12, 3, 4), 
          (3, "male", 47, 15, "yes", 5, 16, 5, 4), 
          (12, "male", 37, 15, "yes", 2, 20, 5, 4), 
          (7, "male", 22, 4, "yes", 2, 17, 6, 4), 
          (1, "male", 27, 4, "no", 2, 14, 4, 5), 
          (7, "female", 52, 15, "yes", 5, 16, 1, 3), 
          (1, "male", 27, 4, "no", 3, 14, 3, 3), 
          (1, "female", 27, 10, "yes", 4, 16, 1, 4), 
          (1, "male", 32, 7, "yes", 3, 14, 7, 4), 
          (7, "male", 32, 7, "yes", 2, 18, 4, 1), 
          (3, "male", 22, 1.5, "no", 1, 14, 3, 2), 
          (7, "male", 22, 4, "yes", 3, 18, 6, 4), 
          (7, "male", 42, 15, "yes", 4, 20, 6, 4), 
          (2, "female", 57, 15, "yes", 1, 18, 5, 4), 
          (7, "female", 32, 4, "yes", 3, 18, 5, 2), 
          (1, "male", 27, 4, "yes", 1, 16, 4, 4), 
          (7, "male", 32, 7, "yes", 4, 16, 1, 4), 
          (2, "male", 57, 15, "yes", 1, 17, 4, 4), 
          (7, "female", 42, 15, "yes", 4, 14, 5, 2), 
          (7, "male", 37, 10, "yes", 1, 18, 5, 3), 
          (3, "male", 42, 15, "yes", 3, 17, 6, 1), 
          (1, "female", 52, 15, "yes", 3, 14, 4, 4), 
          (2, "female", 27, 7, "yes", 3, 17, 5, 3), 
          (12, "male", 32, 7, "yes", 2, 12, 4, 2), 
          (1, "male", 22, 4, "no", 4, 14, 2, 5), 
          (3, "male", 27, 7, "yes", 3, 18, 6, 4), 
          (12, "female", 37, 15, "yes", 1, 18, 5, 5), 
          (7, "female", 32, 15, "yes", 3, 17, 1, 3), 
          (7, "female", 27, 7, "no", 2, 17, 5, 5), 
          (1, "female", 32, 7, "yes", 3, 17, 5, 3), 
          (1, "male", 32, 1.5, "yes", 2, 14, 2, 4), 
          (12, "female", 42, 15, "yes", 4, 14, 1, 2), 
          (7, "male", 32, 10, "yes", 3, 14, 5, 4), 
          (7, "male", 37, 4, "yes", 1, 20, 6, 3), 
          (1, "female", 27, 4, "yes", 2, 16, 5, 3), 
          (12, "female", 42, 15, "yes", 3, 14, 4, 3), 
          (1, "male", 27, 10, "yes", 5, 20, 6, 5), 
          (12, "male", 37, 10, "yes", 2, 20, 6, 2), 
          (12, "female", 27, 7, "yes", 1, 14, 3, 3), 
          (3, "female", 27, 7, "yes", 4, 12, 1, 2), 
          (3, "male", 32, 10, "yes", 2, 14, 4, 4), 
          (12, "female", 17.5, 0.75, "yes", 2, 12, 1, 3), 
          (12, "female", 32, 15, "yes", 3, 18, 5, 4), 
          (2, "female", 22, 7, "no", 4, 14, 4, 3), 
          (1, "male", 32, 7, "yes", 4, 20, 6, 5), 
          (7, "male", 27, 4, "yes", 2, 18, 6, 2), 
          (1, "female", 22, 1.5, "yes", 5, 14, 5, 3), 
          (12, "female", 32, 15, "no", 3, 17, 5, 1), 
          (12, "female", 42, 15, "yes", 2, 12, 1, 2), 
          (7, "male", 42, 15, "yes", 3, 20, 5, 4), 
          (12, "male", 32, 10, "no", 2, 18, 4, 2), 
          (12, "female", 32, 15, "yes", 3, 9, 1, 1), 
          (7, "male", 57, 15, "yes", 5, 20, 4, 5), 
          (12, "male", 47, 15, "yes", 4, 20, 6, 4), 
          (2, "female", 42, 15, "yes", 2, 17, 6, 3), 
          (12, "male", 37, 15, "yes", 3, 17, 6, 3), 
          (12, "male", 37, 15, "yes", 5, 17, 5, 2), 
          (7, "male", 27, 10, "yes", 2, 20, 6, 4), 
          (2, "male", 37, 15, "yes", 2, 16, 5, 4), 
          (12, "female", 32, 15, "yes", 1, 14, 5, 2), 
          (7, "male", 32, 10, "yes", 3, 17, 6, 3), 
          (2, "male", 37, 15, "yes", 4, 18, 5, 1), 
          (7, "female", 27, 1.5, "no", 2, 17, 5, 5), 
          (3, "female", 47, 15, "yes", 2, 17, 5, 2), 
          (12, "male", 37, 15, "yes", 2, 17, 5, 4), 
          (12, "female", 27, 4, "no", 2, 14, 5, 5), 
          (2, "female", 27, 10, "yes", 4, 14, 1, 5), 
          (1, "female", 22, 4, "yes", 3, 16, 1, 3), 
          (12, "male", 52, 7, "no", 4, 16, 5, 5), 
          (2, "female", 27, 4, "yes", 1, 16, 3, 5), 
          (7, "female", 37, 15, "yes", 2, 17, 6, 4), 
          (2, "female", 27, 4, "no", 1, 17, 3, 1), 
          (12, "female", 17.5, 0.75, "yes", 2, 12, 3, 5), 
          (7, "female", 32, 15, "yes", 5, 18, 5, 4), 
          (7, "female", 22, 4, "no", 1, 16, 3, 5), 
          (2, "male", 32, 4, "yes", 4, 18, 6, 4), 
          (1, "female", 22, 1.5, "yes", 3, 18, 5, 2), 
          (3, "female", 42, 15, "yes", 2, 17, 5, 4), 
          (1, "male", 32, 7, "yes", 4, 16, 4, 4), 
          (12, "male", 37, 15, "no", 3, 14, 6, 2), 
          (1, "male", 42, 15, "yes", 3, 16, 6, 3), 
          (1, "male", 27, 4, "yes", 1, 18, 5, 4), 
          (2, "male", 37, 15, "yes", 4, 20, 7, 3), 
          (7, "male", 37, 15, "yes", 3, 20, 6, 4), 
          (3, "male", 22, 1.5, "no", 2, 12, 3, 3), 
          (3, "male", 32, 4, "yes", 3, 20, 6, 2), 
          (2, "male", 32, 15, "yes", 5, 20, 6, 5), 
          (12, "female", 52, 15, "yes", 1, 18, 5, 5), 
          (12, "male", 47, 15, "no", 1, 18, 6, 5), 
          (3, "female", 32, 15, "yes", 4, 16, 4, 4), 
          (7, "female", 32, 15, "yes", 3, 14, 3, 2), 
          (7, "female", 27, 7, "yes", 4, 16, 1, 2), 
          (12, "male", 42, 15, "yes", 3, 18, 6, 2), 
          (7, "female", 42, 15, "yes", 2, 14, 3, 2), 
          (12, "male", 27, 7, "yes", 2, 17, 5, 4), 
          (3, "male", 32, 10, "yes", 4, 14, 4, 3), 
          (7, "male", 47, 15, "yes", 3, 16, 4, 2), 
          (1, "male", 22, 1.5, "yes", 1, 12, 2, 5), 
          (7, "female", 32, 10, "yes", 2, 18, 5, 4), 
          (2, "male", 32, 10, "yes", 2, 17, 6, 5), 
          (2, "male", 22, 7, "yes", 3, 18, 6, 2), 
          (1, "female", 32, 15, "yes", 3, 14, 1, 5))
           
    val data = dataList.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
    

      GBT建模

    data.createOrReplaceTempView("data")
     
    // 字符类型转换成数值  
    val labelWhere = "affairs as label"
    val genderWhere = "case when gender='female' then 0 else cast(1 as double) end as gender"
    val childrenWhere = "case when children='no' then 0 else cast(1 as double) end as children"
     
    val dataLabelDF = spark.sql(s"select $labelWhere, $genderWhere,age,yearsmarried,$childrenWhere,religiousness,education,occupation,rating from data")
     
    val featuresArray = Array("gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
     
    // 字段转换成特征向量  
    val assembler = new VectorAssembler().setInputCols(featuresArray).setOutputCol("features")
    val vecDF: DataFrame = assembler.transform(dataLabelDF)
    vecDF.show(10, truncate = false)
     
    // 将数据分为训练和测试集(30%进行测试) 
    val Array(trainingDF, testDF) = vecDF.randomSplit(Array(0.7, 0.3))
     
    // 自动识别分类的特征,并对它们进行索引  
    // 具有大于5个不同的值的特征被视为连续。  
    val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(5)
     
     
     
    // 训练GBT模型
    val gbt = new GBTRegressor().setLabelCol("label").setFeaturesCol("indexedFeatures").setImpurity("variance").setLossType("squared").setMaxIter(100).setMinInstancesPerNode(100)
     
     
     
    // Chain indexer and GBT in a Pipeline.
    val pipeline = new Pipeline().setStages(Array(featureIndexer, gbt))
     
    // Train model. This also runs the indexer.
    val model = pipeline.fit(trainingDF)
     
    // 做出预测
    val predictions = model.transform(testDF)
     
    // 预测样本展示
    predictions.select("prediction", "label", "features").show(20,false)
     
    // 选择(预测标签,实际标签),并计算测试误差。
    val evaluator = new RegressionEvaluator().setLabelCol("label").setPredictionCol("prediction").setMetricName("rmse")
    val rmse = evaluator.evaluate(predictions)
    println("Root Mean Squared Error (RMSE) on test data = " + rmse)
     
    val gbtModel = model.stages(1).asInstanceOf[GBTRegressionModel]
    println("Learned regression GBT model:
    " + gbtModel.toDebugString)
    

      

  • 相关阅读:
    广东发展银行系统分析师面试问题
    软件开发团队中的个人绩效评价
    高并发下的HashMap问题
    HashMap之equals和hashCode小陷阱
    Java面试中的多线程问题
    Java IO设计模式
    Java IO 流 设计模式
    关于bug的沟通
    Cookie/Session机制详解 <转>
    request.get... getHeader 能取得的信息 参数
  • 原文地址:https://www.cnblogs.com/xiaoma0529/p/7230297.html
Copyright © 2011-2022 走看看