zoukankan      html  css  js  c++  java
  • MIT《计算机科学与编程导论》第六讲


    Lecture 6

    Regression test
    回归测试,测试所有的情况。

    Speed of convergence
    收敛速度

    Newton's method 牛顿法

    The basic idea is, you take a guess and you find the tangent of that guess
    简单的说,先设定一个初始猜测值guess,然后求得该值对应函数的切点斜率。

    f(guess) = guess² - x

    So let's say I guessed 3, I look for the tangent of the curve at 3. 
    And then my next guess is going to be where the tangent crosses the x axis.
    So instead of dividing it in half, I'm using a different method to find the next guess.
    The utility of thie relies upon the observation that, most of the time, tangent line is
    a good approximation to the curve for values near the solution.
    And therefore, the x intercept of tangent will be closer to the right answer.

    举个例子,先假定猜测值是3,找到3点处的切线。
    然后将下一次猜测值guess设定在该切线与X轴相交处。
    这里不再是一分为二的方法,而是使用了另一种方法来找到下一个猜测值guess。
    这种方法使用依据于一个发现:绝大多数情况下,对于问题的解附近的值来说,
    切线是曲线很好的近似。因此切线在X轴上的截距会比先前更接近正确的解。

    So how do we find the intercept of the tangent, the x intercept?
    Well, this is where derivatives come in.
    What we know is that the slope of the tangent is given by the first derivative of
    the function f at the point of the guess. So the slope of the guess is the first derivative.
    Which is dy over dx, change in y divided by change in x.

    我们如何得到切线在X轴上的截距。这里导数就派上用场了。
    该点切线的斜率将会等于函数一阶导数在该点的值。斜率就是一阶导数。
    即dy/dx,y的该变量除以x的该变量。

    f'(guessi) = 2*guessi
    guessi+1 = guessi - f(guessi)/2guessi

    以求开根号16为例,guess从3开始:
    f(3) = 3*3 - 16 = -7
    guessi+1 = 3 - (-7 / 2*3) = 4.1666
    错过了正解4,但会逐渐接近它。

    牛顿法在解决复杂问题时更加出色,比如:
    求squareRoot(2, 0.01)时,牛顿法循环了3次,二分法8次。
    求squareRoot(2, 0.0001)时,牛顿法循环了4次,二分法14次。
    求squareRoot(2, 0.000001)时,牛顿法循环了5次,二分法22次。
    随着问题复杂度增加,好方法同差方法之间的差距就会越来越大。


    Non-scalar type 非标量
    Immutable: Tuples, Strings
    Mutable - List

    Techs = [ 'MIT', 'Cal Tech' ]
    Ivys = [ 'Harvard', 'Yale', 'Brown' ]

    append操作,产生list的list
    Univs = []
    Univs.append(Techs)
    Univs.append(Ivys)
    [ [ 'MIT', 'Cal Tech' ], [ 'Harvard', 'Yale', 'Brown' ] ]

    连接操作
    Univs = Techs + Ivys
    [ 'MIT', 'Cal Tech', 'Harvard', 'Yale', 'Brown' ]

    把各种类型元素保存到list
    L = [ 'L', 'MIT', 3.3, ['a'] ]

    可变性,删除元素,跟split切片很不同
    L.remove('MIT')


  • 相关阅读:
    linux执行命令并获取结果(system)
    awk----基本用法
    shell用法总结
    autoit(au3)使用说明
    博客搜集
    vi常用快捷键总结
    python简单学------------程序传参数,列表推导式,set、list、tuple 转换
    python简单学------------模块
    python简单学------------python面向对象(3)
    python简单学------------python面向对象(2)
  • 原文地址:https://www.cnblogs.com/xiaomaohai/p/6157883.html
Copyright © 2011-2022 走看看