zoukankan      html  css  js  c++  java
  • c/c++ 多态的实现原理分析

    多态的实现原理分析

    当类里有一个函数被声明成虚函数后,创建这个类的对象的时候,就会自动加入一个__vfptr的指针,

    __vfptr维护虚函数列表。如果有三个虚函数,则__vfptr指向的是第一个虚函数,

    __vfptr+1指向的是第二个虚函数,__vfptr+2指向的是第三个虚函数。

    当子类覆盖了父类的虚函数后,__vfptr+n就不是指向父类的虚函数了,而是指向的子类的函数。

    所以当我们用父类的指针或者引用去调用被覆盖的虚函数时,才能够调用到子类的函数。

    1.成员函数加上virtual修饰后,sizeof(类)的数字变大,即使有多个成员函数声明成虚函数,sizeof(类)的数字不会再变大。

    加了virtual后,用GDB调试的时候,发现对象b下多了个_vptr

    #include <iostream>
    using namespace std;
    
    class Base{
    public:
      Base() : x(0){
    
      }
      ~Base(){
    
      }
      virtual void show(){
        cout << "Base show" << endl;
      }
    private:
      int x;
    };
    
    int main(){
      cout << sizeof(Base) << endl;//16
      Base b;
    }
    

    没加virtual的效果:

    #include <iostream>
    using namespace std;
    
    class Base{
    public:
      Base() : x(0){
    
      }
      ~Base(){
    
      }
      void show(){
        cout << "Base show" << endl;
      }
    private:
      int x;
    };
    
    int main(){
      cout << sizeof(Base) << endl;//4
      Base b;
    }
    

    2.声明了虚拟函数后,系统会自动维护一个指针_vptr,指向虚函数列表。

    多态是通过虚函数列表实现的。

    #include <iostream>
    using namespace std;
    
    class Base{
    public:
      Base() : x(0){
    
      }
      ~Base(){
    
      }
      virtual void show(){
        cout << "Base show" << endl;
      }
      virtual void print(){
        cout << "Base print" << endl;
      }
      void fun(){
        cout << "Base fun" << endl;
      }
      
    private:
      int x;
    };
    
    class D : public Base{
    public:
      D() : y(0){
    
      }
      ~D(){
    
      }
      void show(){
        cout << "D show" << endl;
      }
      void fun(){
        cout << "D fun" << endl;
      }
      virtual void list(){
        cout << "D list" << endl;
      }
    private:
      int y;
    };
    int main(){
      D d;
      d.fun();//调用子类的fun方法,父类的fun方法被隐藏了
    
      Base *pb = &d;
      pb->show();//调用子类的show方法,多态(覆盖)
      pb->fun();//调用父类的fun方法
    
      Base &fb = d;
      fb.show();//用子类的show方法,多态(覆盖)
      fb.fun();//调用父类的fun方法
    }
    

    3.虚函数表

    3.1 单继承,无覆盖
    #include <iostream>
    using namespace std;
    
    class Base{
    public:
      virtual void f(){}
      virtual void g(){}
      virtual void h(){}  
    };
    
    class D : public Base{
      virtual void f1(){}
      virtual void g1(){}
      virtual void h1(){}  
    };
    
    int main(){
      D d;
    }
    

    用GDB查看函数指针的方法:x/a 内存地址。查看下一个函数指针:x/a 内存地址+8

    gdb的分析结果:

    18	  D d;
    (gdb) n
    (gdb) p d
    $2 = {<Base> = {_vptr.Base = 0x555555755d48 <vtable for D+16>}, <No data fields>}
    (gdb) x/a 0x555555755d48
    $3 = (long *) 0x555555554a06 <Base::f()>//虚函数表第1个地址
    (gdb) x/a 0x555555755d48+8
    $4 = (long *) 0x555555554a12 <Base::g()>//虚函数表第2个地址
    (gdb) x/a 0x555555755d48+16
    $5 = (long *) 0x555555554a1e <Base::h()>//虚函数表第3个地址
    (gdb) x/a 0x555555755d48+24
    $6 = (long *) 0x555555554a2a <D::f1()>//虚函数表第4个地址
    (gdb) x/a 0x555555755d48+32
    $7 = (long *) 0x555555554a36 <D::g1()>//虚函数表第5个地址
    (gdb) x/a 0x555555755d48+40
    $8 = (long *) 0x555555554a42 <D::h1()>//虚函数表第6个地址
    (gdb) x/a 0x555555755d48+48
    $9 = (long *) 0x7ffff7dc7438 <vtable for __cxxabiv1::__si_class_type_info+16>
    
    3.2 单继承,覆盖
    #include <iostream>
    using namespace std;
    
    class Base{
    public:
      virtual void f(){}
      virtual void g(){}
      virtual void h(){}  
    };
    
    class D : public Base{
      virtual void f(){}
      virtual void g1(){}
      virtual void h1(){}  
    };
    
    int main(){
      D d;
    }
    

    gdb的分析结果:

    18	  D d;
    (gdb) n
    (gdb) p d
    $1 = {<Base> = {_vptr.Base = 0x555555755d50 <vtable for D+16>}, <No data fields>}
    (gdb) p (long*)*((long*)0x555555755d50)
    $2 = (long *) 0x555555554a0e <D::f()>//虚函数表第1个地址(变成了子类的f())
    (gdb) p (long*)*((long*)0x555555755d50+1)
    $3 = (long *) 0x5555555549f6 <Base::g()>//虚函数表第2个地址
    (gdb) p (long*)*((long*)0x555555755d50+2)
    $4 = (long *) 0x555555554a02 <Base::h()>//虚函数表第3个地址
    (gdb) p (long*)*((long*)0x555555755d50+3)
    $5 = (long *) 0x555555554a1a <D::g1()>//虚函数表第4个地址
    (gdb) p (long*)*((long*)0x555555755d50+4)
    $6 = (long *) 0x555555554a26 <D::h1()>//虚函数表第5个地址
    (gdb) p (long*)*((long*)0x555555755d50+5)
    $7 = (long *) 0x7ffff7dc7438 <vtable for __cxxabiv1::__si_class_type_info+16>
    
    
    3.3 多继承,不覆盖
    #include <iostream>
    using namespace std;
    
    class Base{
    public:
      virtual void f(){}
      virtual void g(){}
      virtual void h(){}  
    };
    class Base1{
    public:
      virtual void f(){}
      virtual void g(){}
      virtual void h(){}  
    };
    class Base2{
    public:
      virtual void f(){}
      virtual void g(){}
      virtual void h(){}  
    };
    class D : public Base,public Base1,public Base2{
      virtual void f1(){}
      virtual void g1(){}
      virtual void h1(){}  
    };
    int main(){
      D d;
    }
    

    gdb的分析结果:

    29	  D d;
    (gdb) n
    (gdb) p d
    $1 = {<Base> = {_vptr.Base = 0x555555755ca8 <vtable for D+16>}, <Base1> = {
        _vptr.Base1 = 0x555555755ce8 <vtable for D+80>}, <Base2> = {
        _vptr.Base2 = 0x555555755d10 <vtable for D+120>}, <No data fields>}
    (gdb) p (long*)*((long*)0x555555755ca8)
    $3 = (long *) 0x555555554b6c <Base::f()>//虚函数表(Base)第1个地址
    (gdb) p (long*)*((long*)0x555555755ca8+1)
    $4 = (long *) 0x555555554b78 <Base::g()>//虚函数表(Base)第2个地址
    (gdb) p (long*)*((long*)0x555555755ca8+2)
    $5 = (long *) 0x555555554b84 <Base::h()>//虚函数表(Base)第3个地址
    (gdb) p (long*)*((long*)0x555555755ca8+3)
    $6 = (long *) 0x555555554bd8 <D::f1()>//虚函数表(Base)第4个地址
    (gdb) p (long*)*((long*)0x555555755ca8+4)
    $7 = (long *) 0x555555554be4 <D::g1()>//虚函数表(Base)第5个地址
    (gdb) p (long*)*((long*)0x555555755ca8+5)
    $8 = (long *) 0x555555554bf0 <D::h1()>//虚函数表(Base)第6个地址
    (gdb) p (long*)*((long*)0x555555755ca8+6)
    $9 = (long *) 0xfffffffffffffff8
    (gdb) p (long*)*((long*)0x555555755ce8)
    $10 = (long *) 0x555555554b90 <Base1::f()>//虚函数表(Base1)第1个地址
    (gdb) p (long*)*((long*)0x555555755ce8+1)
    $11 = (long *) 0x555555554b9c <Base1::g()>//虚函数表(Base1)第2个地址
    (gdb) p (long*)*((long*)0x555555755ce8+2)
    $12 = (long *) 0x555555554ba8 <Base1::h()>//虚函数表(Base1)第3个地址
    (gdb) p (long*)*((long*)0x555555755ce8+3)
    $13 = (long *) 0xfffffffffffffff0
    (gdb) p (long*)*((long*)0x555555755d10)
    $14 = (long *) 0x555555554bb4 <Base2::f()>//虚函数表(Base2)第1个地址
    (gdb) p (long*)*((long*)0x555555755d10+1)
    $15 = (long *) 0x555555554bc0 <Base2::g()>//虚函数表(Base2)第2个地址
    (gdb) p (long*)*((long*)0x555555755d10+2)
    $16 = (long *) 0x555555554bcc <Base2::h()>//虚函数表(Base2)第3个地址
    (gdb) p (long*)*((long*)0x555555755d10+3)
    $17 = (long *) 0x7ffff7dc74f8 <vtable for __cxxabiv1::__vmi_class_type_info+16>
    
    
    3.4 多继承,覆盖
    #include <iostream>
    using namespace std;
    
    class Base{
    public:
      virtual void f(){}
      virtual void g(){}
      virtual void h(){}  
    };
    class Base1{
    public:
      virtual void f(){}
      virtual void g(){}
      virtual void h(){}  
    };
    class Base2{
    public:
      virtual void f(){}
      virtual void g(){}
      virtual void h(){}  
    };
    class D : public Base,public Base1,public Base2{
      virtual void f(){}
      virtual void g1(){}
      virtual void h1(){}  
    };
    int main(){
      D d;
    }
    

    gdb的分析结果:

    29	  D d;
    (gdb) n
    (gdb) p d
    $1 = {<Base> = {_vptr.Base = 0x555555755cb0 <vtable for D+16>}, <Base1> = {
        _vptr.Base1 = 0x555555755ce8 <vtable for D+72>}, <Base2> = {
        _vptr.Base2 = 0x555555755d10 <vtable for D+112>}, <No data fields>}
    (gdb) p (long*)*((long*)0x555555755cb0)
    $2 = (long *) 0x555555554ba4 <D::f()>//虚函数表(Base)第1个地址(变成了子类的f())
    (gdb) p (long*)*((long*)0x555555755cb0+1)
    $3 = (long *) 0x555555554b5c <Base::g()>//虚函数表(Base)第2个地址
    (gdb) p (long*)*((long*)0x555555755cb0+2)
    $4 = (long *) 0x555555554b68 <Base::h()>//虚函数表(Base)第3个地址
    (gdb) p (long*)*((long*)0x555555755cb0+3)
    $5 = (long *) 0x555555554bbc <D::g1()>//虚函数表(Base)第4个地址
    (gdb) p (long*)*((long*)0x555555755cb0+4)
    $6 = (long *) 0x555555554bc8 <D::h1()>//虚函数表(Base)第5个地址
    (gdb) p (long*)*((long*)0x555555755cb0+5)
    $7 = (long *) 0xfffffffffffffff8
    (gdb) p (long*)*((long*)0x555555755ce8)
    $8 = (long *) 0x555555554bb5 <non-virtual thunk to D::f()>//虚函数表(Base1)第1个地址(变成了子类的f())
    (gdb) p (long*)*((long*)0x555555755ce8+1)
    $9 = (long *) 0x555555554b74 <Base1::g()>//虚函数表(Base1)第2个地址
    (gdb) p (long*)*((long*)0x555555755ce8+2)
    $10 = (long *) 0x555555554b80 <Base1::h()>//虚函数表(Base1)第3个地址
    (gdb) p (long*)*((long*)0x555555755ce8+3)
    $11 = (long *) 0xfffffffffffffff0
    (gdb) p (long*)*((long*)0x555555755d10)
    $12 = (long *) 0x555555554baf <non-virtual thunk to D::f()>//虚函数表(Base2)第1个地址(变成了子类的f())
    (gdb) p (long*)*((long*)0x555555755d10+1)
    $13 = (long *) 0x555555554b8c <Base2::g()>//虚函数表(Base2)第2个地址
    (gdb) p (long*)*((long*)0x555555755d10+2)
    $14 = (long *) 0x555555554b98 <Base2::h()>//虚函数表(Base2)第3个地址
    (gdb) p (long*)*((long*)0x555555755d10+3)
    $15 = (long *) 0x7ffff7dc74f8 <vtable for __cxxabiv1::__vmi_class_type_info+16>
    
    
  • 相关阅读:
    jaxb 专题一(JAXB 实现java对象与xml之间互相转换)
    spring @Transactional注解参数详解
    Spring声明式事务管理与配置详解
    spring源码解析--事务篇(前篇)
    Java的三种代理模式
    Spring AOP面向切面编程详解
    Spring AOP基于注解的“零配置”方式实现
    Spring AOP 中pointcut expression表达式解析及配置
    Spring AOP详解
    一种解决maven单继承的办法
  • 原文地址:https://www.cnblogs.com/xiaoshiwang/p/9140384.html
Copyright © 2011-2022 走看看