[MXNet逐梦之旅]练习一·使用MXNet拟合直线手动实现
- code
#%% from matplotlib import pyplot as plt from mxnet import autograd, nd import random #%% num_inputs = 1 num_examples = 100 true_w = 1.56 true_b = 1.24 features = nd.arange(0,10,0.1).reshape((-1, 1)) labels = true_w * features + true_b labels += nd.random.normal(scale=0.2, shape=labels.shape) features[0], labels[0] #%% # 本函数已保存在d2lzh包中方便以后使用 def data_iter(batch_size, features, labels): num_examples = len(features) indices = list(range(num_examples)) random.shuffle(indices) # 样本的读取顺序是随机的 for i in range(0, num_examples, batch_size): j = nd.array(indices[i: min(i + batch_size, num_examples)]) yield features.take(j), labels.take(j) # take函数根据索引返回对应元素 #%% batch_size = 10 for X, y in data_iter(batch_size, features, labels): print(X, y) break #%% w = nd.random.normal(scale=0.01, shape=(num_inputs, 1)) b = nd.zeros(shape=(1,)) #%% w.attach_grad() b.attach_grad() #%% def linreg(X, w, b): # 本函数已保存在d2lzh包中方便以后使用 return nd.dot(X, w) + b #%% def squared_loss(y_hat, y): # 本函数已保存在d2lzh包中方便以后使用 return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2 #%% def sgd(params, lr, batch_size): # 本函数已保存在d2lzh包中方便以后使用 for param in params: param[:] = param - lr * param.grad / batch_size #%% lr = 0.05 num_epochs = 20 net = linreg loss = squared_loss for epoch in range(num_epochs): # 训练模型一共需要num_epochs个迭代周期 # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。X # 和y分别是小批量样本的特征和标签 for X, y in data_iter(batch_size, features, labels): with autograd.record(): l = loss(net(X, w, b), y) # l是有关小批量X和y的损失 l.backward() # 小批量的损失对模型参数求梯度 sgd([w, b], lr, batch_size) # 使用小批量随机梯度下降迭代模型参数 train_l = loss(net(features, w, b), labels) print('epoch %d, loss %f' % (epoch + 1, train_l.mean().asnumpy())) #%% true_w, w #%% true_b, b #%% plt.scatter(features.asnumpy(), labels.asnumpy(), 1) labels1 = linreg(features,w,b) plt.scatter(features.asnumpy(), labels1.asnumpy(), 1) plt.show()
- out
黄色是原始数据
绿色为拟合数据