zoukankan      html  css  js  c++  java
  • Core 项目连接多个数据库

    1、首先是先给你的每个库都建造那么一个数据库连接文件,有几个库写几个

    public class firstContext : DbContext
        {
            public firstContext(DbContextOptions<firstContext> options) : base(options)
            {
            }
    
            //自定义DbContext实体属性名与数据库表对应名称(默认 表名与属性名对应是 User与Users)
            protected override void OnModelCreating(ModelBuilder modelBuilder)
            {
                #regionvar company = modelBuilder.Entity<Company>();
                company.HasKey(t => t.CompanyId);
                var partner = modelBuilder.Entity<Partner>();
                partner.HasKey(t => t.PartnerId);#endregion
    
                //相关表名称的和类的对应
                base.OnModelCreating(modelBuilder);
            }
    
    
            #regionpublic DbSet<Company> Company { get; set; }
            public DbSet<Partner> Partner { get; set; }#endregion
    
            protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
            {
                base.OnConfiguring(optionsBuilder);
    
                optionsBuilder.UseSqlServer("Server=.;Data Source=服务器地址;Database=数据库名称;User ID=用户名;Password=密码;");
            }
    
        }   

     2、在startup文件中注册数据库

    //注册数据库的服务
                string connectionString = Configuration.GetConnectionString("firstContext");
                string connectionString2 = Configuration.GetConnectionString("secondContext");
    
                services.AddDbContext<firstContext>(options => options.UseSqlServer(connectionString));
                services.AddDbContext<secondContext>(options => options.UseSqlServer(connectionString2));

    上图中的 Configuration.GetConnectionString("firstContext") 其实是在appsetting里面写的,如下图

    但是暂时还没搞清楚,为什么外面的链接字符串没能拿到里面去用,所以就先只有暂时这样用着了

    下次有时间搞清楚了再回来补上

  • 相关阅读:
    LightOJ 1132 Summing up Powers(矩阵快速幂)
    hdu 3804 Query on a tree (树链剖分+线段树)
    LightOJ 1052 String Growth && uva 12045 Fun with Strings (矩阵快速幂)
    uva 12304 2D Geometry 110 in 1! (Geometry)
    LA 3263 That Nice Euler Circuit (2D Geometry)
    2013 SCAUCPC Summary
    poj 3321 Apple Tree (Binary Index Tree)
    uva 11796 Dog Distance (几何+模拟)
    uva 11178 Morley's Theorem (2D Geometry)
    动手动脑
  • 原文地址:https://www.cnblogs.com/xiaoxiaomini/p/13637417.html
Copyright © 2011-2022 走看看