zoukankan      html  css  js  c++  java
  • 1044. Shopping in Mars (25)

     

    时间限制
    100 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    Shopping in Mars is quite a different experience. The Mars people pay by chained diamonds. Each diamond has a value (in Mars dollars M$). When making the payment, the chain can be cut at any position for only once and some of the diamonds are taken off the chain one by one. Once a diamond is off the chain, it cannot be taken back. For example, if we have a chain of 8 diamonds with values M$3, 2, 1, 5, 4, 6, 8, 7, and we must pay M$15. We may have 3 options:

    1. Cut the chain between 4 and 6, and take off the diamonds from the position 1 to 5 (with values 3+2+1+5+4=15).
    2. Cut before 5 or after 6, and take off the diamonds from the position 4 to 6 (with values 5+4+6=15).
    3. Cut before 8, and take off the diamonds from the position 7 to 8 (with values 8+7=15).

    Now given the chain of diamond values and the amount that a customer has to pay, you are supposed to list all the paying options for the customer.

    If it is impossible to pay the exact amount, you must suggest solutions with minimum lost.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 2 numbers: N (<=105), the total number of diamonds on the chain, and M (<=108), the amount that the customer has to pay. Then the next line contains N positive numbers D1 ... DN (Di<=103 for all i=1, ..., N) which are the values of the diamonds. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print "i-j" in a line for each pair of i <= j such that Di + ... + Dj = M. Note that if there are more than one solution, all the solutions must be printed in increasing order of i.

    If there is no solution, output "i-j" for pairs of i <= j such that Di + ... + Dj > M with (Di + ... + Dj - M) minimized. Again all the solutions must be printed in increasing order of i.

    It is guaranteed that the total value of diamonds is sufficient to pay the given amount.

    Sample Input 1:
    16 15
    3 2 1 5 4 6 8 7 16 10 15 11 9 12 14 13
    
    Sample Output 1:
    1-5
    4-6
    7-8
    11-11
    
    Sample Input 2:
    5 13
    2 4 5 7 9
    
    Sample Output 2:
    2-4
    4-5

     1 #include <stdio.h>
     2 
     3 int num[100000];
     4 
     5 int getSupperBound(int left,int right,int x)   //找到以left 为 左边界的,和<x且最小的有序数组的子数组的右边界
     6 {
     7     int mid;
     8     while(left < right )
     9     {
    10         mid = (left + right)/2;
    11         if(num[mid] > x) right = mid;
    12         else
    13         {
    14             left = mid + 1;
    15         }
    16     }
    17 
    18     return left;
    19 }
    20 
    21 
    22 int main()
    23 {
    24     int n,line,i,tem;
    25     
    26     while(scanf("%d%d",&n,&line)!=EOF)
    27     {
    28         getchar();
    29         num[0] = 0;
    30         long long MIN=100000000;
    31         for(i=1;i<=n;i++)
    32         {
    33             scanf("%d",&tem);
    34             num[i]=num[i-1]+tem;
    35         }
    36 
    37         for(i = 1;i<=n;i++)
    38         {
    39             int j =getSupperBound(i,n+1,num[i-1]+line);
    40 
    41             if(num[j-1]-num[i-1]== line)   //num[j-1]-num[i-1] 第一个 <=line 的
    42             {
    43                 MIN = line;
    44                 break;
    45             }
    46             else
    47             {
    48                if(j<=n && num[j]-num[i-1] < MIN)
    49                {
    50                     MIN = num[j]-num[i-1];
    51                }
    52             }
    53         }
    54 
    55 
    56         for(i = 1;i<=n;i++)
    57         {
    58             int j =getSupperBound(i,n+1,num[i-1]+MIN); //这里要加 MIN
    59             if(num[j-1]-num[i-1]==MIN)
    60                 printf("%d-%d
    ",i,j-1);
    61 
    62         }
    63 
    64     }
    65   return 0;
    66 }
  • 相关阅读:
    Qt QApplication 类简介--Qt 类简介专题(四)
    回调函数
    C++类型转换总结
    Debug Error
    C++回调函数(callback)的使用
    Nokia5230连接电脑无线上网
    photoshop cs6\cs5找不到扫描仪的解决办法(Twain_32.8BA补丁下载)
    UML类图几种关系的总结
    实现单点登录
    poj 1151Atlantis线段树求矩形面积并解题报告
  • 原文地址:https://www.cnblogs.com/xiaoyesoso/p/4276187.html
Copyright © 2011-2022 走看看