zoukankan      html  css  js  c++  java
  • 1003. Emergency (25)

     

    时间限制
    400 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.

    Input

    Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (<= 500) - the number of cities (and the cities are numbered from 0 to N-1), M - the number of roads, C1 and C2 - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.

    Output

    For each test case, print in one line two numbers: the number of different shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather.
    All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.

    Sample Input
    5 6 0 2
    1 2 1 5 3
    0 1 1
    0 2 2
    0 3 1
    1 2 1
    2 4 1
    3 4 1
    
    Sample Output
    2 4
     1 #include <stdio.h>
     2 #include<string.h>
     3 
     4 #define MAX 510
     5 int INF = 100000;
     6 int w[MAX];
     7 int wight[MAX];
     8 int d[MAX];
     9 int num[MAX];
    10 int Grap[MAX][MAX];
    11 bool visit[MAX];
    12 
    13 void Dijkstra(int begin,int NodeNum)
    14 {
    15     d[begin] = 0;
    16     w[begin] = wight[begin];
    17     num[begin] = 1;
    18     for(int i = 0; i < NodeNum ;i++)
    19     {
    20         int index = -1;
    21         int Min = INF ;
    22         for(int j = 0 ;j < NodeNum;j++)  //找出距离起点最近节点
    23         {
    24             if(visit[j] == false && d[j] < Min)
    25             {
    26                 index = j;
    27                 Min = d[j];
    28             }
    29         }
    30 
    31         if(index == -1) //如果找不出小于INF的节点,说明剩下的节点都与起点不连通
    32             return ;
    33         visit[index] = true ;
    34 
    35         for(int v = 0;v < NodeNum;v++)
    36         {
    37             if(visit[v] == false && Grap[index][v]!=INF)
    38             {
    39                 if(d[index] + Grap[index][v] < d[v])
    40                 {
    41                     d[v] = d[index] + Grap[index][v];
    42                     w[v] = w[index] + wight[v];
    43                     num[v] = num[index];
    44                 }
    45                 else if(d[index] + Grap[index][v] == d[v])
    46                 {
    47                     if(w[index] + wight[v] > w[v])
    48                         w[v] = w[index] + wight[v];
    49                     num[v] = num[index] + num[v]; 
    50                 }
    51             }
    52         }
    53     }
    54 }
    55 int main()
    56 {
    57     int i,NodeNum,EdgNum,Begin,End;
    58     scanf("%d%d%d%d",&NodeNum,&EdgNum,&Begin,&End);
    59 
    60     for(i = 0 ;i < NodeNum ;i++)
    61     {
    62         for(int j = 0 ; j < NodeNum ; j++)
    63             Grap[i][j] = INF ;
    64 
    65         w[i] = 0;
    66         num[i] = 0;
    67         d[i] = INF ;
    68         visit[i] = false;
    69     }
    70 
    71 
    72     for(i = 0 ; i < NodeNum ; i ++)
    73     {
    74         scanf("%d",&wight[i]);
    75     }
    76     int x,y;
    77     for( i = 0;i< EdgNum ;i++)
    78     {
    79         scanf("%d%d",&x,&y);
    80         scanf("%d",&Grap[x][y]);
    81         Grap[y][x] = Grap[x][y];
    82     }
    83 
    84     Dijkstra(Begin,NodeNum);
    85     printf("%d %d
    ",num[End],w[End]);
    86     return 0;
    87 }


  • 相关阅读:
    CF 936C Lock Puzzle——构造
    LOJ 2980 「THUSCH 2017」大魔法师——线段树
    LOJ 2979 「THUSCH 2017」换桌——多路增广费用流
    LOJ 2978 「THUSCH 2017」杜老师——bitset+线性基+结论
    LOJ 2997 「THUSCH 2017」巧克力——思路+随机化+斯坦纳树
    LOJ 2557 「CTSC2018」组合数问题 (46分)
    bzoj 3158 千钧一发 —— 最小割
    CF1092 D & E —— 思路+单调栈,树的直径
    bzoj 5120 无限之环 & 洛谷 P4003 —— 费用流(多路增广SPFA)
    bzoj 1070 修车 —— 费用流
  • 原文地址:https://www.cnblogs.com/xiaoyesoso/p/4290991.html
Copyright © 2011-2022 走看看